Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chemosphere ; 355: 141773, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548076

RESUMEN

Bioplastics might be an ecofriendly alternative to traditional plastics. However, recent studies have emphasized that even bioplastics can end up becoming micro- and nano-plastics due to their degradation under ambient environmental conditions. Hence, there is an urgent need to assess the hidden environmental pollution caused by bioplastics. However, little is known about the evolutionary trends of bibliographic data, degradation pathways, formation, and toxicity of micro- and nano-scaled bioplastics originating from biodegradable polymers such as polylactic acid, polyhydroxyalkanoates, and starch-based plastics. Therefore, the prime objective of the current review was to investigate evolutionary trends and the latest advancements in the field of micro-bioplastic pollution. Additionally, it aims to confront the limitations of existing research on microplastic pollution derived from the degradation of bioplastic wastes, and to understand what is needed in future research. The literature survey revealed that research focusing on micro- and nano-bioplastics has begun since 2012. This review identifies novel insights into microbioplastics formation through diverse degradation pathways, including photo-oxidation, ozone-induced degradation, mechanochemical degradation, biodegradation, thermal, and catalytic degradation. Critical research gaps are identified, including defining optimal environmental conditions for complete degradation of diverse bioplastics, exploring micro- and nano-bioplastics formation in natural environments, investigating the global occurrence and distribution of these particles in diverse ecosystems, assessing toxic substances released during bioplastics degradation, and bridging the disparity between laboratory studies and real-world applications. By identifying new trends and knowledge gaps, this study lays the groundwork for future investigations and sustainable solutions in the realm of sustainable management of bioplastic wastes.


Asunto(s)
Plásticos , Polihidroxialcanoatos , Plásticos/química , Microplásticos , Ecosistema , Contaminación Ambiental , Biodegradación Ambiental , Almidón
2.
Environ Pollut ; 335: 122320, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544402

RESUMEN

Secondary micro(nano)plastics generated from the degradation of plastics pose a major threat to environmental and human health. Amid the growing research on microplastics to date, the detection of secondary micro(nano)plastics is hampered by inadequate analytical instrumentation in terms of accuracy, validation, and repeatability. Given that, the current review provides a critical evaluation of the research trends in instrumental methods developed so far for the qualitative and quantitative determination of micro(nano)plastics with an emphasis on the evolution, new trends, missing links, and future directions. We conducted a meta-analysis of the growing literature surveying over 800 journal articles published from 2004 to 2022 based on the Web of Science database. The significance of this review is associated with the proposed novel classification framework to identify three main research trends, viz. (i) preliminary investigations, (ii) current progression, and (iii) novel advances in sampling, characterization, and quantification targeting both micro- and nano-sized plastics. Field Flow Fractionation (FFF) and Hydrodynamic Chromatography (HDC) were found to be the latest techniques for sampling and extraction of microplastics. Fluorescent Molecular Rotor (FMR) and Thermal Desorption-Proton Transfer Reaction-Mass Spectrometry (TD-PTR-MS) were recognized as the modern developments in the identification and quantification of polymer units in micro(nano)plastics. Powerful imaging techniques, viz. Digital Holographic Imaging (DHI) and Fluorescence Lifetime Imaging Microscopy (FLIM) offered nanoscale analysis of the surface topography of nanoplastics. Machine learning provided fast and less labor-intensive analytical protocols for accurate classification of plastic types in environmental samples. Although the existing analytical methods are justifiable merely for microplastics, they are not fully standardized for nanoplastics. Future research needs to be more inclined towards secondary nanoplastics for their effective and selective analysis targeting a broad range of environmental and biological matrices.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/análisis , Microplásticos , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas
3.
Sci Total Environ ; 881: 163456, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37062308

RESUMEN

Asbestos is a group of six major silicate minerals that belong to the serpentine and amphibole families, and include chrysotile, amosite, crocidolite, anthophyllite, tremolite and actinolite. Weathering and human disturbance of asbestos-containing materials (ACMs) can lead to the emission of asbestos dust, and the inhalation of respirable asbestos fibrous dust can lead to 'mesothelioma' cancer and other diseases, including the progressive lung disease called 'asbestosis'. There is a considerable legacy of in-situ ACMs in the built environment, and it is not practically or economically possible to safely remove ACMs from the built environment. The aim of the review is to examine the three approaches used for the sustainable management of hazardous ACMs in the built environment: containment, stabilization, and inertization or destruction. Most of the asbestos remaining in the built environment can be contained in a physically secured form so that it does not present a significant health risk of emitting toxic airborne fibres. In settings where safe removal is not practically feasible, stabilization and encapsulation can provide a promising solution, especially in areas where ACMs are exposed to weathering or disturbance. Complete destruction and inertization of asbestos can be achieved by thermal decomposition using plasma and microwave radiation. Bioremediation and chemical treatment (e.g., ultrasound with oxalic acid) have been found to be effective in the inertization of ACMs. Technologies that achieve complete destruction of ACMs are found to be attractive because the treated products can be recycled or safely disposed of in landfills.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA