Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125688

RESUMEN

Polyethylene terephthalate (PET) degradation by enzymatic hydrolysis is significant for addressing plastic pollution and fostering sustainable waste management practices. Identifying thermophilic and thermostable PET hydrolases is particularly crucial for industrial bioprocesses, where elevated temperatures may enhance enzymatic efficiency and process kinetics. In this study, we present the discovery of a novel thermophilic and thermostable PETase enzyme named Sis, obtained through metagenomic sequence-based analysis. Sis exhibits robust activity on nanoPET substrates, demonstrating effectiveness at temperatures up to 70 °C and displaying exceptional thermal stability with a melting temperature (Tm) of 82 °C. Phylogenetically distinct from previously characterised PET hydrolases, Sis represents a valuable addition to the repertoire of enzymes suitable for PET degradation.


Asunto(s)
Estabilidad de Enzimas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Hidrólisis , Filogenia , Temperatura , Especificidad por Sustrato , Cinética , Hidrolasas/química , Hidrolasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
2.
Heliyon ; 10(3): e24556, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317956

RESUMEN

Human angiogenin (hANG) is the most studied stress-induced ribonuclease (RNase). In physiological conditions it performs its main functions in nucleoli, promoting cell proliferation by rDNA transcription, whereas it is strongly limited by its inhibitor (RNH1) throughout the rest of the cell. In stressed cells hANG dissociates from RNH1 and thickens in the cytoplasm where it manages the translational arrest and the recruitment of stress granules, thanks to its propensity to cleave tRNAs and to induce the release of active halves. Since it exists a clear connection between hANG roles and its intracellular routing, starting from our recent findings on heterologous ANG (ANG) properties in human keratinocytes (HaCaT cells), here we designed a variant unable to translocate into the nucleus with the aim of thoroughly verifying its potentialities under stress. This variant, widely characterized for its structural features and biological attitudes, shows more pronounced aid properties than unmodified protein. The collected evidence thus fully prove that ANG stress-induced skills in assisting cellular homeostasis are strictly due to its cytosolic localization. This study opens an interesting scenario for future studies regarding both the strengthening of skin defences and in understanding the mechanism of action of these special enzymes potentially suitable for any cell type.

3.
Pharmaceuticals (Basel) ; 16(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37895857

RESUMEN

Cationic antimicrobial peptides (CAMPs) are powerful molecules with antimicrobial, antibiofilm and endotoxin-scavenging activities. These properties make CAMPs very attractive drugs in the face of the rapid increase in multidrug-resistant (MDR) pathogens, but they are limited by their susceptibility to proteolytic degradation. An intriguing solution to this issue could be the development of functional mimics of CAMPs with structures that enable the evasion of proteases. Peptoids (N-substituted glycine oligomers) are an important class of peptidomimetics with interesting benefits: easy synthetic access, intrinsic proteolytic stability and promising bioactivities. Here, we report the characterization of P13#1, a 13-residue peptoid specifically designed to mimic cathelicidins, the best-known and most widespread family of CAMPs. P13#1 showed all the biological activities typically associated with cathelicidins: bactericidal activity over a wide spectrum of strains, including several ESKAPE pathogens; the ability to act in combination with different classes of conventional antibiotics; antibiofilm activity against preformed biofilms of Pseudomonas aeruginosa, comparable to that of human cathelicidin LL-37; limited toxicity; and an ability to inhibit LPS-induced proinflammatory effects which is comparable to that of "the last resource" antibiotic colistin. We further studied the interaction of P13#1 with SDS, LPSs and bacterial cells by using a fluorescent version of P13#1. Finally, in a subcutaneous infection mouse model, it showed antimicrobial and anti-inflammatory activities comparable to ampicillin and gentamicin without apparent toxicity. The collected data indicate that P13#1 is an excellent candidate for the formulation of new antimicrobial therapies.

4.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37629131

RESUMEN

Surfaces in highly anthropized environments are frequently contaminated by both harmless and pathogenic bacteria. Accidental contact between these contaminated surfaces and people could contribute to uncontrolled or even dangerous microbial diffusion. Among all possible solutions useful to achieve effective disinfection, ultraviolet irradiations (UV) emerge as one of the most "Green" technologies since they can inactivate microorganisms via the formation of DNA/RNA dimers, avoiding the environmental pollution associated with the use of chemical sanitizers. To date, mainly UV-C irradiation has been used for decontamination purposes, but in this study, we investigated the cytotoxic potential on contaminated surfaces of combined UV radiations spanning the UV-A, UV-B, and UV-C spectrums, obtained with an innovative UV lamp never conceived so far by analyzing its effect on a large panel of collection and environmental strains, further examining any possible adverse effects on eukaryotic cells. We found that this novel device shows a significant efficacy on different planktonic and sessile bacteria, and, in addition, it is compatible with eukaryotic skin cells for short exposure times. The collected data strongly suggest this new lamp as a useful device for fast and routine decontamination of different environments to ensure appropriate sterilization procedures.


Asunto(s)
Descontaminación , Terapia Ultravioleta , Humanos , Proyectos Piloto , Rayos Ultravioleta , Bacterias
5.
Sci Rep ; 13(1): 3733, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878924

RESUMEN

The misuse of antibiotics has led to the emergence of drug-resistant pathogens. Antimicrobial peptides (AMPs) may represent valuable alternative to antibiotics; nevertheless, the easy degradation due to environmental stress and proteolytic enzyme action, limits their use. So far, different strategies have been developed to overcome this drawback. Among them, glycosylation of AMPs represents a promising approach. In this work, we synthesized and characterized the N-glycosilated form of the antimicrobial peptide LL-III (g-LL-III). The N-acetylglucosamine (NAG) was covalently linked to the Asn residue and the interaction of g-LL-III with bacterial model membranes, together with its resistance to proteases, were investigated. Glycosylation did not affect the peptide mechanism of action and its biological activity against both bacteria and eukaryotic cells. Interestingly, a higher resistance to the activity of proteolytic enzymes was achieved. The reported results pave the way for the successful application of AMPs in medicine and biotechnological fields.


Asunto(s)
Péptidos Antimicrobianos , Endopeptidasas , Glicosilación , Péptido Hidrolasas , Antibacterianos/farmacología
6.
Biomolecules ; 13(2)2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36830606

RESUMEN

White button mushroom (Agaricus bisporus (J.E. Lange) Imbach) is one of the widely consumed edible mushrooms. Indeed, A. bisporus fruiting bodies are a rich source of nutrients and bioactive molecules. In addition, several enzymes with biotechnological applications are found in A. bisporus (e.g., enzymes for lignocellulose degradation). Here, a novel ribotoxin-like protein (RL-P) from the edible mushroom A. bisporus was purified and characterized. This RL-P, named bisporitin, is a monomeric protein (17-kDa) exhibiting specific ribonucleolytic activity by releasing the α-fragment (hallmark of RL-Ps) when incubated with rabbit ribosomes. In addition, bisporitin shows magnesium-dependent endonuclease activity and displays a similar far-UV CD spectrum as ageritin, the prototype of RL-Ps, isolated from Cyclocybe aegerita fruiting bodies. Interestingly, bisporitin is the first member of RL-Ps to have noticeably lower thermal stability (Tm = 48.59 ± 0.98 °C) compared to RL-Ps isolated in other mushrooms (Tm > 70 °C). Finally, this protein is only partially hydrolyzed in an in vitro digestive system and does not produce adverse growing effects on eukaryotic cell lines. This evidence paves the way for future investigations on possible bioactivities of this RL-P in the digestive system.


Asunto(s)
Agaricus , Animales , Conejos , Ribosomas/metabolismo
7.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955913

RESUMEN

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.


Asunto(s)
ARN de Transferencia , Ribonucleasas , Humanos , Queratinocitos/metabolismo , Estrés Oxidativo , ARN de Transferencia/genética , Ribonucleasa Pancreática/metabolismo
8.
Phys Chem Chem Phys ; 24(13): 7994-8002, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35314853

RESUMEN

Previously, we characterized in detail the mechanism of action of the antimicrobial peptide GKY20, showing that it selectively perturbs the bacterial-like membrane employing peptide conformational changes, lipid segregation and domain formation as key steps in promoting membrane disruption. Here, we used a combination of biophysical techniques to similarly characterize the antimicrobial activity as well as the membrane perturbing capability of GKY10, a much shorter version of the GKY20 peptide. GKY10 is only half of the parent peptide and consists of the last 10 amino acids (starting from the C-terminus) of the full-length peptide. Despite a large difference in length, we found that GKY10, like the parent peptide, retains the ability to adopt a helical structure and to induce lipid segregation upon membrane binding. Overall, our results suggest that the amino acid sequence of GKY10 is responsible for most of the observed behaviors of GKY20. Our results shed further light on the mechanism of action of the full-length peptide and provide useful information for the design and development of new peptides that serve as antimicrobial agents.


Asunto(s)
Antiinfecciosos , Péptidos Antimicrobianos , Trombina , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Humanos , Membranas
9.
ACS Nano ; 16(2): 1880-1895, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35112568

RESUMEN

Encrypted peptides have been recently found in the human proteome and represent a potential class of antibiotics. Here we report three peptides derived from the human apolipoprotein B (residues 887-922) that exhibited potent antimicrobial activity against drug-resistant Klebsiella pneumoniae, Acinetobacter baumannii, and Staphylococci both in vitro and in an animal model. The peptides had excellent cytotoxicity profiles, targeted bacteria by depolarizing and permeabilizing their cytoplasmic membrane, inhibited biofilms, and displayed anti-inflammatory properties. Importantly, the peptides, when used in combination, potentiated the activity of conventional antibiotics against bacteria and did not select for bacterial resistance. To ensure translatability of these molecules, a protease resistant retro-inverso variant of the lead encrypted peptide was synthesized and demonstrated anti-infective activity in a preclinical mouse model. Our results provide a link between human plasma and innate immunity and point to the blood as a source of much-needed antimicrobials.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Animales , Antibacterianos/química , Biopelículas , Humanos , Klebsiella pneumoniae , Ratones , Pruebas de Sensibilidad Microbiana
10.
Pharmaceuticals (Basel) ; 15(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35215373

RESUMEN

Therapeutic solutions to counter Burkholderia cepacia complex (Bcc) bacteria are challenging due to their intrinsically high level of antibiotic resistance. Bcc organisms display a variety of potential virulence factors, have a distinct lipopolysaccharide naturally implicated in antimicrobial resistance. and are able to form biofilms, which may further protect them from both host defence peptides (HDPs) and antibiotics. Here, we report the promising anti-biofilm and immunomodulatory activities of human HDP GVF27 on two of the most clinically relevant Bcc members, Burkholderia multivorans and Burkholderia cenocepacia. The effects of synthetic and labelled GVF27 were tested on B. cenocepacia and B. multivorans biofilms, at three different stages of formation, by confocal laser scanning microscopy (CLSM). Assays on bacterial cultures and on human monocytes challenged with B. cenocepacia LPS were also performed. GVF27 exerts, at different stages of formation, anti-biofilm effects towards both Bcc strains, a significant propensity to function in combination with ciprofloxacin, a relevant affinity for LPSs isolated from B. cenocepacia as well as a good propensity to mitigate the release of pro-inflammatory cytokines in human cells pre-treated with the same endotoxin. Overall, all these findings contribute to the elucidation of the main features that a good therapeutic agent directed against these extremely leathery biofilm-forming bacteria should possess.

11.
Toxins (Basel) ; 13(12)2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34941723

RESUMEN

Therapeutic treatments with Artemisia annua have a long-established tradition in various diseases due to its antibacterial, antioxidant, antiviral, anti-malaria and anti-cancer effects. However, in relation to the latter, virtually all reports focused on toxic effects of A. annua extracts were obtained mostly through conventional maceration methods. In the present study, an innovative extraction procedure from A. annua, based on pressurised cyclic solid-liquid (PCSL) extraction, resulted in the production of a new phytocomplex with enhanced anti-cancer properties. This extraction procedure generated a pressure gradient due to compressions and following decompressions, allowing to directly perform the extraction without any maceration. The toxic effects of A. annua PCSL extract were tested on different cells, including three cancer cell lines. The results of this study clearly indicate that the exposure of human, murine and canine cancer cells to serial dilutions of PCSL extract resulted in higher toxicity and stronger propensity to induce apoptosis than that detected by subjecting the same cells to Artemisia extracts obtained through canonical extraction by maceration. Collected data suggest that PCSL extract of A. annua could be a promising and economic new therapeutic tool to treat human and animal tumours.


Asunto(s)
Artemisia annua/química , Neoplasias Óseas/tratamiento farmacológico , Citotoxinas/uso terapéutico , Células HeLa/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Extractos Vegetales/toxicidad , Extractos Vegetales/uso terapéutico , Antineoplásicos/uso terapéutico , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Citotoxinas/toxicidad , Humanos , Italia , Extractos Vegetales/química
12.
Int J Mol Sci ; 22(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34948103

RESUMEN

Environment-sensitive fluorophores are very valuable tools in the study of molecular and cellular processes. When used to label proteins and peptides, they allow for the monitoring of even small variations in the local microenvironment, thus acting as reporters of conformational variations and binding events. Luciferin and aminoluciferin, well known substrates of firefly luciferase, are environment-sensitive fluorophores with unusual and still-unexploited properties. Both fluorophores show strong solvatochromism. Moreover, luciferin fluorescence is influenced by pH and water abundance. These features allow to detect local variations of pH, solvent polarity and local water concentration, even when they occur simultaneously, by analyzing excitation and emission spectra. Here, we describe the characterization of (amino)luciferin-labeled derivatives of four bioactive peptides: the antimicrobial peptides GKY20 and ApoBL, the antitumor peptide p53pAnt and the integrin-binding peptide RGD. The two probes allowed for the study of the interaction of the peptides with model membranes, SDS micelles, lipopolysaccharide micelles and Escherichia coli cells. Kd values and binding stoichiometries for lipopolysaccharide were also determined. Aminoluciferin also proved to be very well-suited to confocal laser scanning microscopy. Overall, the characterization of the labeled peptides demonstrates that luciferin and aminoluciferin are previously neglected environment-sensitive labels with widespread potential applications in the study of proteins and peptides.


Asunto(s)
Colorantes Fluorescentes/química , Luciferinas/química , Péptidos/química , Concentración de Iones de Hidrógeno
13.
J Biochem ; 170(4): 473-482, 2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33993266

RESUMEN

Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations. In the present study, we report the activity of Ageritin on both prokaryotic and eukaryotic cells showing that the protein has a prominent effect on cancer cells viability and no effects on eukaryotic and bacterial cells. In order to rationalize these findings, the ability of the protein to interact with various liposomes mimicking normal, cancer and bacterial cell membranes was explored. The collected results indicate that Ageritin can interact with DPPC/DPPS/Chol vesicles, used as a model of cancer cell membranes, and with DPPC/DPPG vesicles, used as a model of bacterial cell membranes, suggesting a selective interaction with anionic lipids. However, a different perturbation of the two model membranes, mediated by cholesterol redistribution, was observed and this might be at the basis of Ageritin selective toxicity towards cancer cells.


Asunto(s)
Membrana Celular/metabolismo , Micotoxinas/farmacología , Neoplasias/metabolismo , Ribonucleasas/farmacología , Agrocybe/química , Animales , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Basidiomycota/química , Calorimetría/métodos , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Liposomas/metabolismo , Ratones , Micotoxinas/toxicidad , Neoplasias/tratamiento farmacológico , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/toxicidad , Ribosomas/metabolismo
14.
Food Chem ; 359: 129931, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33940474

RESUMEN

Porcini are edible mushrooms widely used in cooking due to their extraordinary taste. Despite this, cases of food poisoning have been reported in the recent literature also for ingestion of porcini. Here, we report the isolation from Boletus edulis fruiting bodies of two novel ribotoxin-like proteins (RL-Ps), enzymes already studied in other organisms for their toxicity. These RL-Ps, named Edulitin 1 (16-kDa) and Edulitin 2 (14-kDa), show peculiar structural and enzymatic differences, which probably reflect their different bio-activities and a dose/time dependent toxicity (Edulitin 2) on normal and tumoral human cells. Particularly interesting is the resistance to proteolysis of Edulitin 2, for which it was observed that its toxicity was abolished only after heat treatment (90 °C) followed by proteolysis. As mushroom poisoning is a serious food safety issue, data here presented confirm the existence of toxins also in porcini and the importance of a proper cooking before their consumption.


Asunto(s)
Basidiomycota/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Toxinas Biológicas/toxicidad , Proteínas Fúngicas/toxicidad , Humanos , Conformación Proteica
15.
Int J Biol Macromol ; 182: 659-668, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33848550

RESUMEN

The superfamily of vertebrate ribonucleases, a large group of evolutionarily related proteins, continues to provide interesting structural and functional information. In particular, the crystal structure of SS-RNase-2 from Salmo salar (SS2), here presented, has revealed a novel auto-inhibition mechanism that enriches the number of inhibition strategies observed in some members of the family. Within an essentially unmodified RNase folding, the SS2 active site cleft is in part obstructed by the collapse of an extra pentapeptide inserted in the C-terminal region. This unexpected intrusion alters the organization of the catalytic triad by pushing one catalytic histidine off the pocket. Possible mechanisms to remove the active site obstruction have also been studied through the production of two mutants that provide useful information on the functionality of this intriguing version of the ribonuclease superfamily.


Asunto(s)
Proteínas de Peces/química , Ribonucleasas/química , Animales , Evolución Molecular , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Dominios Proteicos , Pliegue de Proteína , Ribonucleasas/genética , Ribonucleasas/metabolismo , Salmo salar/metabolismo
16.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799812

RESUMEN

Obesity and associated metabolic disturbances, which have been increasing worldwide in recent years, are the consequences of unhealthy diets and physical inactivity and are the main factors underlying non-communicable diseases (NCD). These diseases are now responsible for about three out of five deaths worldwide, and it has been shown that they depend on mitochondrial dysfunction, systemic inflammation and oxidative stress. It was also demonstrated that several nutritional components modulating these processes are able to influence metabolic homeostasis and, consequently, to prevent or delay the onset of NCD. An interesting combination of nutraceutical substances, named DMG-gold, has been shown to promote metabolic and physical wellness. The aim of this research was to investigate the metabolic, inflammatory and oxidative pathways modulated by DMG-gold in an animal model with diet-induced obesity. Our data indicate that DMG-gold decreases the metabolic efficiency and inflammatory state and acts as an antioxidant and detoxifying agent, modulating mitochondrial functions. Therefore, DMG-gold is a promising candidate in the prevention/treatment of NCD.


Asunto(s)
Dieta , Suplementos Dietéticos , Micronutrientes/análisis , Mitocondrias/efectos de los fármacos , Obesidad/prevención & control , Animales , Antioxidantes/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/fisiología , Obesidad/etiología , Obesidad/metabolismo , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
17.
RSC Chem Biol ; 2(6): 1618-1630, 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34977577

RESUMEN

Streptococcus gordonii and Streptococcus sanguinis, commensal bacteria present in the oral cavity of healthy individuals, upon entry into the bloodstream can become pathogenic, causing infective endocarditis (IE). Sialic acid-binding serine-rich repeat adhesins on the microbial surface represent an important factor of successful infection to cause IE. They contain Siglec-like binding regions (SLBRs) that variously recognize different repertoires of O-glycans, with some strains displaying high selectivity and others broader specificity. We here dissect at an atomic level the mechanism of interaction of SLBR-B and SLBR-H from S. gordonii with a multivarious approach that combines NMR spectroscopy and computational and biophysical studies. The binding pockets of both SLBRs are broad enough to accommodate extensive interactions with sialoglycans although with key differences related to strain specificity. Furthermore, and significantly, the pattern of interactions established by the SLBRs are mechanistically very different from those reported for mammalian Siglecs despite them having a similar fold. Thus, our detailed description of the binding modes of streptococcal Siglec-like adhesins sparks the development of tailored synthetic inhibitors and therapeutics specific for Streptococcal adhesins to counteract IE, without impairing the interplay between Siglecs and glycans.

18.
Int J Biol Macromol ; 161: 1329-1336, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32755707

RESUMEN

Fungi produce several toxins active against plants, animal or humans. Among them, ribotoxins are enzymes that specifically attack ribosomes irreparably compromising protein synthesis, useful as insecticides or as anticancer agents. Here, a novel ribotoxin from the edible mushroom Pleurotus ostreatus has been purified and characterized. This ribotoxin, named Ostreatin, is a specific ribonuclease releasing α-fragment when incubated with yeast or rabbit ribosomes. Ostreatin shows IC50 of 234 pM in rabbit reticulocyte lysate, and metal dependent endonuclease activity. Following the completion of Ostreatin primary structure, we ascertained that this toxin is homologous to Ageritin, the first ribotoxin-like protein from the basidiomycete Agrocybe aegerita, with which it shares 38.8% amino acid sequence identity. Ostreatin consists of 131 amino acid residues with an experimental molecular mass of 14,263.51 Da ([M+H+]+). Homology modeling revealed that Ostreatin and Ageritin share a similar fold in which the common catalytic triad is conserved. Purified Ostreatin lacks N-terminal and C-terminal peptides, which instead are present in the Ostreatin coding sequence. Such peptides are probably involved in protein sorting and for this they could be removed. Our findings confirm the presence of ribotoxin-like proteins in basidiomycetes edible mushrooms, that we propose as novel tool for biotechnological applications.


Asunto(s)
Cuerpos Fructíferos de los Hongos/enzimología , Micotoxinas/química , Pleurotus/enzimología , Ribonucleasas/química , Agaricales , Secuencia de Aminoácidos , Ascomicetos/genética , Secuencia de Bases , Cromatografía en Gel , Activación Enzimática , Expresión Génica , Modelos Moleculares , Micotoxinas/genética , Micotoxinas/aislamiento & purificación , Micotoxinas/metabolismo , Conformación Proteica , Proteínas Recombinantes , Ribonucleasas/genética , Ribonucleasas/aislamiento & purificación , Ribonucleasas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Relación Estructura-Actividad
19.
Int J Pharm ; 584: 119437, 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-32447024

RESUMEN

Concern over antibiotic resistance is growing, and new classes of antibiotics, particularly against Gram-negative bacteria, are needed. Antimicrobial peptides (AMPs) have been proposed as a new class of clinically useful antimicrobials. Special attention has been devoted to frog-skin temporins. In particular, temporin L (TL) is strongly active against Gram-positive, Gram-negative bacteria and yeast strains. With the aim of overcoming some of the main drawbacks preventing the widespread clinical use of this peptide, i.e. toxicity and unfavorable pharmacokinetics profile, we designed new formulations combining TL with different types of cyclodextrins (CDs). TL was associated to a panel of neutral or negatively charged, monomeric and polymeric CDs. The impact of CDs association on TL solubility, as well as the transport through bacterial alginates was assessed. The biocompatibility on human cells together with the antimicrobial and antibiofilm properties of TL/CD systems was explored.


Asunto(s)
Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Ciclodextrinas/química , Alginatos/química , Antiinfecciosos/administración & dosificación , Péptidos Catiónicos Antimicrobianos/administración & dosificación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclodextrinas/administración & dosificación , Humanos , Modelos Moleculares , Solubilidad
20.
Curr Top Med Chem ; 20(14): 1324-1337, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32338222

RESUMEN

Several eukaryotic proteins with defined physiological roles may act as precursors of cryptic bioactive peptides released upon protein cleavage by the host and/or bacterial proteases. Based on this, the term "cryptome" has been used to define the unique portion of the proteome encompassing proteins with the ability to generate bioactive peptides (cryptides) and proteins (crypteins) upon proteolytic cleavage. Hence, the cryptome represents a source of peptides with potential pharmacological interest. Among eukaryotic precursor proteins, human apolipoproteins play an important role, since promising bioactive peptides have been identified and characterized from apolipoproteins E, B, and A-I sequences. Human apolipoproteins derived peptides have been shown to exhibit antibacterial, anti-biofilm, antiviral, anti-inflammatory, anti-atherogenic, antioxidant, or anticancer activities in in vitro assays and, in some cases, also in in vivo experiments on animal models. The most interesting Host Defence Peptides (HDPs) identified thus far in human apolipoproteins are described here with a focus on their biological activities applicable to biomedicine. Altogether, reported evidence clearly indicates that cryptic peptides represent promising templates for the generation of new drugs and therapeutics against infectious diseases.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Apolipoproteínas/química , Fragmentos de Péptidos/química , Péptido Hidrolasas/metabolismo , Secuencia de Aminoácidos , Animales , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Antineoplásicos/farmacología , Antioxidantes/farmacología , Antivirales/farmacología , Química Farmacéutica , Descubrimiento de Drogas , Humanos , Fragmentos de Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA