Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 14(1): 2292, 2024 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-38280906

RESUMEN

Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.


Asunto(s)
Glomerulonefritis , Podocitos , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Glomerulonefritis/patología , Inflamación/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo , Receptores Toll-Like/metabolismo
2.
Kidney Int ; 104(6): 1164-1169, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37774923

RESUMEN

Mammalian kidneys filter enormous volumes of water and small solutes, a filtration driven by the hydrostatic pressure in glomerular capillaries, which is considerably higher than in most other tissues. Interdigitating cellular processes of podocytes form the slits for fluid filtration connected by the membrane-like slit diaphragm cell junction containing a mechanosensitive ion channel complex and allow filtration while counteracting hydrostatic pressure. Several previous publications speculated that podocyte processes may display a preferable orientation on glomerular capillaries instead of a random distribution. However, for decades, the controversy over spatially oriented filtration slits could not be resolved due to technical limitations of imaging technologies. Here, we used advanced high-resolution, three-dimensional microscopy with high data throughput to assess spatial orientation of podocyte processes and filtration slits quantitatively. Filtration-slit-generating secondary processes preferentially align along the capillaries' longitudinal axis while primary processes are preferably perpendicular to the longitudinal direction. This preferential orientation required maturation in development of the mice but was lost in mice with kidney disease due to treatment with nephrotoxic serum or with underlying heterologous mutations in the podocyte foot process protein podocin. Thus, the observation that podocytes maintain a preferred spatial orientation of their processes on glomerular capillaries goes well in line with the role of podocyte foot processes as mechanical buttresses to counteract mechanical forces resulting from pressurized capillaries. Future studies are needed to establish how podocytes establish and maintain their orientation and why orientation is lost under pathological conditions.


Asunto(s)
Podocitos , Animales , Ratones , Capilares , Orientación Espacial , Glomérulos Renales , Arteria Renal , Mamíferos
3.
J Am Soc Nephrol ; 33(1): 138-154, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853150

RESUMEN

BACKGROUND: Diseases of the kidney's glomerular filtration barrier are a leading cause of end stage renal failure. Despite a growing understanding of genes involved in glomerular disorders in children, the vast majority of adult patients lack a clear genetic diagnosis. The protein podocin p.R229Q, which results from the most common missense variant in NPHS2, is enriched in cohorts of patients with FSGS. However, p.R229Q has been proposed to cause disease only when transassociated with specific additional genetic alterations, and population-based epidemiologic studies on its association with albuminuria yielded ambiguous results. METHODS: To test whether podocin p.R229Q may also predispose to the complex disease pathogenesis in adults, we introduced the exact genetic alteration in mice using CRISPR/Cas9-based genome editing (PodR231Q ). We assessed the phenotype using super-resolution microscopy and albuminuria measurements and evaluated the stability of the mutant protein in cell culture experiments. RESULTS: Heterozygous PodR231Q/wild-type mice did not present any overt kidney disease or proteinuria. However, homozygous PodR231Q/R231Q mice developed increased levels of albuminuria with age, and super-resolution microscopy revealed preceding ultrastructural morphologic alterations that were recently linked to disease predisposition. When injected with nephrotoxic serum to induce glomerular injury, heterozygous PodR231Q/wild-type mice showed a more severe course of disease compared with Podwild-type/wild-type mice. Podocin protein levels were decreased in PodR231Q/wild-type and PodR231Q/R231Q mice as well as in human cultured podocytes expressing the podocinR231Q variant. Our in vitro experiments indicate an underlying increased proteasomal degradation. CONCLUSIONS: Our findings demonstrate that podocin R231Q exerts a pathogenic effect on its own, supporting the concept of podocin R229Q contributing to genetic predisposition in adult patients.


Asunto(s)
Albuminuria/genética , Predisposición Genética a la Enfermedad/genética , Barrera de Filtración Glomerular/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Renales/genética , Proteínas de la Membrana/genética , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Podocitos/patología
4.
J Extracell Vesicles ; 10(1): e12026, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33304478

RESUMEN

Kidney transplantation is the preferred renal replacement therapy available. Yet, long-term transplant survival is unsatisfactory, partially due to insufficient possibilities of longitudinal monitoring and understanding of the biological processes after transplantation. Small urinary extracellular vesicles (suEVs) - as a non-invasive source of information - were collected from 22 living donors and recipients. Unbiased proteomic analysis revealed temporal patterns of suEV protein signature and cellular processes involved in both early response and longer-term graft adaptation. Complement activation was among the most dynamically regulated components. This unique atlas of the suEV proteome is provided through an online repository allowing dynamic interrogation by the user. Additionally, a correlative analysis identified putative prognostic markers of future allograft function. One of these markers - phosphoenol pyruvate carboxykinase (PCK2) - could be confirmed using targeted MS in an independent validation cohort of 22 additional patients. This study sheds light on the impact of kidney transplantation on urinary extracellular vesicle content and allows the first deduction of early molecular processes in transplant biology. Beyond that our data highlight the potential of suEVs as a source of biomarkers in this setting.


Asunto(s)
Vesículas Extracelulares/metabolismo , Trasplante de Riñón , Donadores Vivos , Fosfoenolpiruvato Carboxiquinasa (ATP)/orina , Proteómica , Adulto , Anciano , Aloinjertos , Biomarcadores/orina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
5.
Plant Biotechnol J ; 9(1): 22-31, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20444206

RESUMEN

Tumour necrosis factor (TNF) is a major pro-inflammatory cytokine involved in multiple inflammatory diseases. The detrimental activity of TNF can be blocked by various antagonists, and commercial therapeutics based upon this principle have been approved for treatment of diseases including rheumatoid arthritis, Crohn's disease and psoriasis. In a search for new, improved anti-inflammatory therapeutics we have designed a single-domain monoclonal antibody (V(H) H), which recognizes TNF. The antibody component (TNF-V(H) H) is based upon an anti-human TNF Camelidae heavy-chain monoclonal antibody, which was linked to an elastin-like polypeptide (ELP). We demonstrate that ELP fusion to the TNF-V(H) H enhances accumulation of the fusion protein during biomanufacturing in transgenic tobacco plants. With this study, we show for the first time that this plant-derived anti-human TNF-V(H) H antibody was biologically active in vivo. Therefore, therapeutic application of TNF-V(H) H-ELP fusion protein was tested in humanized TNF mice and was shown to be effective in preventing death caused by septic shock. The in vivo persistence of the ELPylated antibody was ∼24 fold longer than that of non-ELPylated TNF-V(H) H.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Choque Séptico/prevención & control , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Modelos Animales de Enfermedad , Elastina , Escherichia coli , Galactosa , Expresión Génica , Humanos , Células L , Lipopolisacáridos , Ratones , Péptidos , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Choque Séptico/inducido químicamente , Choque Séptico/inmunología , Nicotiana/genética , Factor de Necrosis Tumoral alfa/inmunología
6.
J Biotechnol ; 142(2): 170-8, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19439388

RESUMEN

Tumor necrosis factor (TNF) plays an important role in chronic inflammatory disorders, such as Rheumatoid Arthritis and Crohn's disease. Recently, monoclonal Camelidae variable heavy-chain domain-only antibodies (V(H)H) were developed to antagonize the action of human TNF (hTNF). Here, we show that hTNF-V(H)H does not interfere with hTNF trimerization, but competes with hTNF for hTNF-receptor binding. Moreover, we describe posttranslational dimerization and multimerization of hTNF-V(H)H molecules in vitro catalyzed by microbial transglutaminases (MTG). The ribonuclease S-tag-peptide was shown to act as a peptidyl substrate in covalent protein cross-linking reactions catalyzed by MTG from Streptomyces mobaraensis. The S-tag sequence was C-terminally fused to the hTNF-V(H)H and the fusion protein was expressed and purified from Escherichia coli culture supernatants. hTNF-V(H)H-S-tag fusion proteins were efficiently dimerized and multimerized by MTG whereas hTNF-V(H)H was not susceptible to protein cross-linking. Cell cytotoxicity assays, using hTNF as apoptosis inducing cytokine, revealed that dimerized and multimerized hTNF-V(H)H proteins were much more active than the monomeric hTNF-V(H)H. We hypothesize that improved inhibition by dimeric and multimeric single chain hTNF-V(H)H proteins is caused by avidity effects.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina/metabolismo , Multimerización de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Transglutaminasas/metabolismo , Factor de Necrosis Tumoral alfa , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Pruebas Inmunológicas de Citotoxicidad , Escherichia coli/genética , Etanercept , Humanos , Inmunoglobulina G/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Unión Proteica , Receptores del Factor de Necrosis Tumoral/metabolismo , Rumiantes/inmunología , Espectrometría de Fluorescencia , Streptomyces/enzimología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA