Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Chem Biol ; 31(7): 1363-1372.e8, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38917791

RESUMEN

Molecular glues can induce proximity between a target protein and ubiquitin ligases to induce target degradation, but strategies for their discovery remain limited. We screened 3,200 bioactive small molecules and identified that C646 requires neddylation-dependent protein degradation to induce cytotoxicity. Although the histone acetyltransferase p300 is the canonical target of C646, we provide extensive evidence that C646 directly targets and degrades Exportin-1 (XPO1). Multiple cellular phenotypes induced by C646 were abrogated in cells expressing the known XPO1C528S drug-resistance allele. While XPO1 catalyzes nuclear-to-cytoplasmic transport of many cargo proteins, it also directly binds chromatin. We demonstrate that p300 and XPO1 co-occupy hundreds of chromatin loci. Degrading XPO1 using C646 or the known XPO1 modulator S109 diminishes the chromatin occupancy of both XPO1 and p300, enabling direct targeting of XPO1 to phenocopy p300 inhibition. This work highlights the utility of drug-resistant alleles and further validates XPO1 as a targetable regulator of chromatin state.


Asunto(s)
Cromatina , Proteína p300 Asociada a E1A , Proteína Exportina 1 , Carioferinas , Receptores Citoplasmáticos y Nucleares , Humanos , Cromatina/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Carioferinas/metabolismo , Carioferinas/antagonistas & inhibidores , Proteolisis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo
2.
ACS Chem Biol ; 19(4): 896-907, 2024 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-38506663

RESUMEN

Cancer cell culture models frequently rely on fetal bovine serum as a source of protein and lipid factors that support cell survival and proliferation; however, serum-containing media imperfectly mimic the in vivo cancer environment. Recent studies suggest that typical serum-containing cell culture conditions can mask cancer dependencies, for example, on cholesterol biosynthesis enzymes, that exist in vivo and emerge when cells are cultured in media that provide more realistic levels of lipids. Here, we describe a high-throughput screen that identified fenretinide and ivermectin as small molecules whose cytotoxicity is greatly enhanced in lipid-restricted media formulations. The mechanism of action studies indicates that ivermectin-induced cell death involves oxidative stress, while fenretinide likely targets delta 4-desaturase, sphingolipid 1, a lipid desaturase necessary for ceramide synthesis, to induce cell death. Notably, both fenretinide and ivermectin have previously demonstrated in vivo anticancer efficacy despite their low cytotoxicity under typical cell culture conditions. These studies suggest ceramide synthesis as a targetable vulnerability of cancer cells cultured under lipid-restricted conditions and reveal a general screening strategy for identifying additional cancer dependencies masked by the superabundance of medium lipids.


Asunto(s)
Medios de Cultivo , Lípidos , Neoplasias , Humanos , Ceramidas/metabolismo , Medios de Cultivo/química , Ácido Graso Desaturasas , Fenretinida/farmacología , Ivermectina/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Esfingolípidos , Lípidos/química , Antineoplásicos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Línea Celular Tumoral/efectos de los fármacos
3.
RSC Chem Biol ; 3(1): 56-68, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35128409

RESUMEN

While the cholesterol biosynthesis pathway has been extensively studied, recent work has forged new links between inhibition of specific sterol pathway enzymes, accumulation of their unique sterol substrates, and biological areas as diverse as cancer, immunology, and neurodegenerative disease. We recently reported that dozens of small molecules enhance formation of oligodendrocytes, a glial cell type lost in multiple sclerosis, by inhibiting CYP51, Sterol 14-reductase, or EBP and inducing cellular accumulation of their 8,9-unsaturated sterol substrates. Several adjacent pathway enzymes also have 8,9-unsaturated sterol substrates but have not yet been evaluated as potential targets for oligodendrocyte formation or in many other biological contexts, in part due to a lack of available small-molecule probes. Here, we show that genetic suppression of SC4MOL or HSD17B7 increases the formation of oligodendrocytes. Additionally, we have identified and optimized multiple potent new series of SC4MOL and HSD17B7 inhibitors and shown that these small molecules enhance oligodendrocyte formation. SC4MOL inhibitor CW4142 induced accumulation of SC4MOL's sterol substrates in mouse brain and represents an in vivo probe of SC4MOL activity. Mechanistically, the cellular accumulation of these 8,9-unsaturated sterols represents a central driver of enhanced oligodendrocyte formation, as exogenous addition of purified SC4MOL and HSD17B7 substrates but not their 8,9-saturated analogs promotes OPC differentiation. Our work validates SC4MOL and HSD17B7 as novel targets for promoting oligodendrocyte formation, underlines a broad role for 8,9-unsaturated sterols as enhancers of oligodendrocyte formation, and establishes the first high-quality small molecules targeting SC4MOL and HSD17B7 as novel tools for probing diverse areas of biology.

4.
Cell Chem Biol ; 28(6): 866-875.e5, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33636107

RESUMEN

Small molecules that promote the formation of new myelinating oligodendrocytes from oligodendrocyte progenitor cells (OPCs) are potential therapeutics for demyelinating diseases. We recently established inhibition of specific cholesterol biosynthesis enzymes and resulting accumulation of 8,9-unsaturated sterols as a unifying mechanism through which many such molecules act. To identify more potent sterol enhancers of oligodendrocyte formation, we synthesized a collection of 8,9-unsaturated sterol derivatives and found that 24,25-epoxylanosterol potently promoted oligodendrocyte formation. In OPCs, 24,25-epoxylanosterol was metabolized to 24,25-epoxycholesterol via the epoxycholesterol shunt pathway. Increasing flux through the epoxycholesterol shunt using genetic manipulation or small-molecule inhibition of lanosterol synthase (LSS) increased endogenous 24,25-epoxycholesterol levels and OPC differentiation. Notably, exogenously supplied 24,25-epoxycholesterol promoted oligodendrocyte formation despite lacking an 8,9-unsaturation. This work highlights epoxycholesterol shunt usage, controlled by inhibitors of LSS, as a target to promote oligodendrocyte formation. Additionally, sterols beyond the 8,9-unsaturated sterols, including 24,25-epoxycholesterol, drive oligodendrocyte formation.


Asunto(s)
Colesterol/análogos & derivados , Transferasas Intramoleculares/metabolismo , Oligodendroglía/metabolismo , Animales , Células Cultivadas , Colesterol/biosíntesis , Colesterol/química , Masculino , Ratones , Oligodendroglía/citología
5.
ACS Chem Biol ; 12(9): 2296-2304, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708375

RESUMEN

The biochemical pathway that gives onions their savor is part of the chemical warfare against microbes and animals. This defense mechanism involves formation of a volatile lachrymatory factor (LF) ((Z)-propanethial S-oxide) that causes familiar eye irritation associated with onion chopping. LF is produced in a reaction catalyzed by lachrymatory factor synthase (LFS). The principles by which LFS facilitates conversion of a sulfenic acid substrate into LF have been difficult to experimentally examine owing to the inherent substrate reactivity and lability of LF. To shed light on the mechanism of LF production in the onion, we solved crystal structures of LFS in an apo-form and in complex with a substrate analogue, crotyl alcohol. The enzyme closely resembles the helix-grip fold characteristic for plant representatives of the START (star-related lipid transfer) domain-containing protein superfamily. By comparing the structures of LFS to that of the abscisic acid receptor, PYL10, a representative of the START protein superfamily, we elucidated structural adaptations underlying the catalytic activity of LFS. We also delineated the architecture of the active site, and based on the orientation of the ligand, we propose a mechanism of catalysis that involves sequential proton transfer accompanied by formation of a carbanion intermediate. These findings reconcile chemical and biochemical information regarding thioaldehyde S-oxide formation and close a long-lasting gap in understanding of the mechanism responsible for LF production in the onion.


Asunto(s)
Oxidorreductasas Intramoleculares/química , Cebollas/enzimología , Butanoles/metabolismo , Cristalografía por Rayos X , Oxidorreductasas Intramoleculares/metabolismo , Simulación del Acoplamiento Molecular , Cebollas/química , Cebollas/metabolismo , Conformación Proteica , Sulfóxidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA