Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Function (Oxf) ; 5(2): zqae002, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486975

RESUMEN

The pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 instigated the most serious global health crisis. Clinical presentation of COVID-19 frequently includes severe neurological and neuropsychiatric symptoms. However, it is presently unknown whether and to which extent pathological impairment of blood-brain barrier (BBB) contributes to the development of neuropathology during COVID-19 progression. In the present study, we used human induced pluripotent stem cells-derived brain endothelial cells (iBECs) to study the effects of blood plasma derived from COVID-19 patients on the BBB integrity in vitro. We also performed a comprehensive analysis of the cytokine and chemokine profiles in the plasma of COVID-19 patients, healthy and recovered individuals. We found significantly increased levels of interferon γ-induced protein 10 kDa, hepatocyte growth factor, and interleukin-18 in the plasma of COVID-19 patients. However, blood plasma from COVID-19 patients did not affect transendothelial electrical resistance in iBEC monolayers. Our results demonstrate that COVID-19-associated blood plasma inflammatory factors do not affect BBB paracellular pathway directly and suggest that pathological remodeling (if any) of BBB during COVID-19 may occur through indirect or yet unknown mechanisms.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Humanos , Barrera Hematoencefálica , Células Endoteliales , Impedancia Eléctrica
2.
Clin Epigenetics ; 15(1): 63, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-37060086

RESUMEN

BACKGROUND: Ovarian cancer has a specific unmet clinical need, with a persistently poor 5-year survival rate observed in women with advanced stage disease warranting continued efforts to develop new treatment options. The amplification of BRD4 in a significant subset of high-grade serous ovarian carcinomas (HGSC) has led to the development of BET inhibitors (BETi) as promising antitumour agents that have subsequently been evaluated in phase I/II clinical trials. Here, we describe the molecular effects and ex vivo preclinical activities of i-BET858, a bivalent pan-BET inhibitor with proven in vivo BRD inhibitory activity. RESULTS: i-BET858 demonstrates enhanced cytotoxic activity compared with earlier generation BETis both in cell lines and primary cells derived from clinical samples of HGSC. At molecular level, i-BET858 triggered a bipartite transcriptional response, comprised of a 'core' network of genes commonly associated with BET inhibition in solid tumours, together with a unique i-BET858 gene signature. Mechanistically, i-BET858 elicited enhanced DNA damage, cell cycle arrest and apoptotic cell death compared to its predecessor i-BET151. CONCLUSIONS: Overall, our ex vivo and in vitro studies indicate that i-BET858 represents an optimal candidate to pursue further clinical validation for the treatment of HGSC.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias Ováricas , Femenino , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Metilación de ADN , Carcinoma Epitelial de Ovario/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Puntos de Control del Ciclo Celular , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma/genética , Apoptosis , Daño del ADN
3.
Neurochem Res ; 48(4): 1211-1221, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35859077

RESUMEN

Multiple paracrine factors are implicated in the regulation of barrier properties of human brain endothelial cells (BECs) in different physiologic and pathologic settings. We have recently demonstrated that autocrine secretion of basic fibroblast growth factor (bFGF) by BECs is necessary for the establishment of endothelial barrier (as demonstrated by high trans-endothelial electric resistance, TEER), whereas exogenous bFGF inhibits TEER in a concentration-dependent manner. In the present study we analysed the contribution of MAPK/ERK and STAT3 signalling pathways to the inhibitory effects of exogenous bFGF. Treatment with bFGF (8 ng/ml) for 3 days increased phosphorylation of ERK1/2 and STAT3. Treatment with FGF receptor 1 (FGFR1) inhibitor PD173074 (15 µM) suppressed both basal and bFGF-induced activation of ERK1/2 and STAT3. Suppression of STAT signalling with Janus kinase inhibitor JAKi (15 nM) alone or in the presence of bFGF did not change TEER in BEC monolayers. Exposure to JAKi affected neither proliferation, nor expression and distribution of tight junction (TJ) proteins claudin-5, occludin and zonula occludens-1 (ZO-1). In contrast, treatment with MEK 1/2 inhibitor U0126 (10 µM) partially neutralised inhibitory effect of bFGF thus increasing TEER, whereas U0126 alone did not affect resistance of endothelial barrier. Our findings demonstrate that MAPK/ERK signalling pathway does not affect autocrine bFGF signalling-dependent BECs barrier function but is largely responsible for the disruptive effects of the exogenous bFGF. We speculate that bFGF may (depending on concentration and possibly origin) dynamically regulate permeability of the endothelial blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Factor 2 de Crecimiento de Fibroblastos , Humanos , Barrera Hematoencefálica/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Células Endoteliales/metabolismo , Butadienos/farmacología , Proteínas de Uniones Estrechas/metabolismo
4.
J Cell Physiol ; 236(11): 7642-7654, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33959949

RESUMEN

Multiple paracrine factors regulate the barrier properties of human brain capillary endothelial cells (BCECs). Understanding the precise mode of action of these factors remains a challenging task, because of the limited availability of functionally competent BCECs and the use of serum-containing medium. In the present study, we employed a defined protocol for producing BCECs from human inducible pluripotent stem cells. We found that autocrine secretion of basic fibroblast growth factor (bFGF) is necessary for the establishment a tight BCECs barrier, as revealed by measurements of transendothelial electric resistance (TEER). In contrast, addition of exogenous bFGF in concentrations higher than 4 ng/ml inhibited TEER in a concentration-dependent manner. Exogenous bFGF did not significantly affect expression and distribution of tight junction proteins claudin-5, occludin and zonula occludens (ZO)-1. Treatment with FGF receptor blocker PD173074 (15 µM) suppressed inhibitory effects of bFGF and induced nuclear translocation of protein ZO-1. Inhibition of phosphoinositide 3-Kinase (PI-3K) with LY294002 (25 µM) significantly potentiated an inhibitory effect of bFGF on TEER indicating that PI-3K signalling pathway counteracts bFGF modulation of TEER. In conclusion, we show that autocrine bFGF secretion is necessary for the proper barrier function of BCECs, whereas exogenous bFGF in higher doses suppresses barrier resistance. Our findings demonstrate a dual role for bFGF in the regulation of BCEC barrier function.


Asunto(s)
Encéfalo/irrigación sanguínea , Capilares/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Factor 2 de Crecimiento de Fibroblastos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Comunicación Autocrina , Capilares/metabolismo , Diferenciación Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Impedancia Eléctrica , Células Endoteliales/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Permeabilidad , Fosfatidilinositol 3-Quinasa/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/agonistas , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA