Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
2.
Mol Psychiatry ; 29(4): 1205-1215, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38418578

RESUMEN

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.


Asunto(s)
Discapacidad Intelectual , Receptores de Glutamato Metabotrópico , Transducción de Señal , Sinapsis , Humanos , Discapacidad Intelectual/genética , Masculino , Sinapsis/metabolismo , Sinapsis/genética , Femenino , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal/genética , Homocigoto , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor del Glutamato Metabotropico 5/genética , Linaje , Adulto , Paraplejía/genética , Paraplejía/metabolismo , Animales , Niño , Neuronas/metabolismo , Adolescente , Células HEK293 , Mutación/genética
3.
J Med Genet ; 60(10): 999-1005, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37185208

RESUMEN

PURPOSE: ARF1 was previously implicated in periventricular nodular heterotopia (PVNH) in only five individuals and systematic clinical characterisation was not available. The aim of this study is to provide a comprehensive description of the phenotypic and genotypic spectrum of ARF1-related neurodevelopmental disorder. METHODS: We collected detailed phenotypes of an international cohort of individuals (n=17) with ARF1 variants assembled through the GeneMatcher platform. Missense variants were structurally modelled, and the impact of several were functionally validated. RESULTS: De novo variants (10 missense, 1 frameshift, 1 splice altering resulting in 9 residues insertion) in ARF1 were identified among 17 unrelated individuals. Detailed phenotypes included intellectual disability (ID), microcephaly, seizures and PVNH. No specific facial characteristics were consistent across all cases, however microretrognathia was common. Various hearing and visual defects were recurrent, and interestingly, some inflammatory features were reported. MRI of the brain frequently showed abnormalities consistent with a neuronal migration disorder. CONCLUSION: We confirm the role of ARF1 in an autosomal dominant syndrome with a phenotypic spectrum including severe ID, microcephaly, seizures and PVNH due to impaired neuronal migration.


Asunto(s)
Discapacidad Intelectual , Microcefalia , Heterotopia Nodular Periventricular , Humanos , Encéfalo/diagnóstico por imagen , Genotipo , Discapacidad Intelectual/genética , Fenotipo , Convulsiones/genética
4.
Hum Genet ; 142(5): 691-696, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36076104

RESUMEN

Congenital diarrheas and enteropathies (CODEs) constitute a heterogeneous group of individually rare disorders manifesting with infantile-onset chronic diarrhea. Genomic deletions in chromosome 16, encompassing a sequence termed the 'intestine-critical region (ICR)', were recently identified as the cause of an autosomal recessive congenital enteropathy. The regulatory sequence within the ICR is flanked by an unannotated open reading frame termed PERCC1, which plays a role in enteroendocrine cell (EEC) function. We investigated two unrelated children with idiopathic congenital diarrhea requiring home parenteral nutrition attending the Irish Intestinal Failure Program. Currently 12 and 19-years old, these Irish male patients presented with watery diarrhea and hypernatremic dehydration in infancy. Probands were phenotyped by comprehensive clinical investigations, including endoscopic biopsies and serum gastrin level measurements. Following negative exome sequencing, PCR and Sanger sequencing of the entire coding region and intron boundaries of PERCC1 were performed for each proband and their parents. In both patients, serum gastrin levels were low and failed to increase following a meal challenge. While no deletions involving the ICR were detected, targeted sequencing of the PERCC1 gene revealed a shared homozygous c.390C > G stop gain variant. We report clinical and molecular findings in two unrelated patients harboring a shared homozygous variant in PERCC1, comprising the first description of a point mutation in this gene in association with CODE. That both parenteral nutrition dependent children with unexplained diarrhea at our institution harbored a PERCC1 mutation underscores the importance of its inclusion in exome sequencing interpretation.


Asunto(s)
Codón sin Sentido , Gastrinas , Adolescente , Adulto , Niño , Humanos , Masculino , Adulto Joven , Diarrea/genética , Gastrinas/genética , Mutación , Fenotipo
5.
Front Genet ; 13: 991721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204321

RESUMEN

Introduction: Vici Syndrome is a rare, severe, neurodevelopmental/neurodegenerative disorder with multi-systemic manifestations presenting in infancy. It is mainly characterized by global developmental delay, seizures, agenesis of the corpus callosum, hair and skin hypopigmentation, bilateral cataract, and varying degrees of immunodeficiency, among other features. Vici Syndrome is caused by biallelic pathogenic variants in EPG5, resulting in impaired autophagy. Thus far, the condition has been reported in less than a hundred individuals. Objective and Methods: We aimed to characterize the clinical and molecular findings in individuals harboring biallelic EPG5 variants, recruited from four medical centers in Israel. Furthermore, we aimed to utilize a machine learning-based tool to assess facial features of Vici syndrome. Results: Eleven cases of Vici Syndrome from five unrelated families, one of which was diagnosed prenatally with subsequent termination of pregnancy, were recruited. A total of five disease causing variants were detected in EPG5: two novel: c.2554-5A>G and c.1461delC; and 3 previously reported: c.3447G>A, c.5993C>G, and c.1007A>G, the latter previously identified in several patients of Ashkenazi-Jewish (AJ) descent. Amongst 140,491 individuals screened by the Dor Yeshorim Program, we show that the c.1007A>G variant has an overall carrier frequency of 0.45% (1 in 224) among AJ individuals. Finally, based on two-dimensional facial photographs of individuals with Vici syndrome (n = 19), a composite facial mask was created using the DeepGestalt algorithm, illustrating facial features typical of this disorder. Conclusion: We report on ten children and one fetus from five unrelated families, affected with Vici syndrome, and describe prenatal and postnatal characteristics. Our findings contribute to the current knowledge regarding the molecular basis and phenotypic features of this rare syndrome. Additionally, the deep learning-based facial gestalt adds to the clinician's diagnostic toolbox and may aid in facilitating identification of affected individuals.

6.
Am J Med Genet A ; 188(11): 3262-3277, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209351

RESUMEN

Protein phosphatase 2A (PP2A) is a heterotrimeric serine/threonine phosphatase that regulates numerous biological processes. PPP2R1A encodes the scaffolding "Aα" subunit of PP2A. To date, nearly 40 patients have been previously reported with 19 different pathogenic PPP2R1A variants, with phenotypes including intellectual disability, developmental delay, epilepsy, infant agenesis/dysgenesis of the corpus callosum, and dysmorphic features. Apart from a single case, severe congenital heart defects (CHD) have not been described. We report four new unrelated individuals with pathogenic heterozygous PPP2R1A variants and CHD and model the crystal structure of several variants to investigate mechanisms of phenotype disparity. Individuals 1 and 2 have a previously described variant (c.548G>A, p.R183Q) and similar phenotypes with severe ventriculomegaly, agenesis/dysgenesis of the corpus callosum, and severe CHD. Individual 3 also has a recurrent variant (c.544C>T, p.R182W) and presented with agenesis of corpus callosum, ventriculomegaly, mild pulmonic stenosis, and small patent foramen ovale. Individual 4 has a novel variant (c.536C>A, p.P179H), ventriculomegaly, and atrial septal defect. To conclude, we propose expansion of the phenotype of PPP2R1A neurodevelopmental disorder to include CHD. Further, the R183Q variant has now been described in three individuals, all with severe neurologic abnormalities, severe CHD, and early death suggesting that this variant may be particularly deleterious.


Asunto(s)
Cardiopatías Congénitas , Hidrocefalia , Malformaciones del Sistema Nervioso , Trastornos del Neurodesarrollo , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/genética , Humanos , Trastornos del Neurodesarrollo/genética , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Serina , Factores de Transcripción
7.
Genet Med ; 24(11): 2249-2261, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36074124

RESUMEN

PURPOSE: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS: In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION: Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.


Asunto(s)
Trastornos de la Motilidad Ciliar , Ciliopatías , Proteínas del Citoesqueleto , Animales , Humanos , Ratones , Axonema/genética , Cilios/metabolismo , Trastornos de la Motilidad Ciliar/genética , Trastornos de la Motilidad Ciliar/metabolismo , Trastornos de la Motilidad Ciliar/patología , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Proteínas del Citoesqueleto/genética , Mutación , Proteínas/genética , Pez Cebra/genética
8.
Front Genet ; 13: 936064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046236

RESUMEN

Hermansky-Pudlak syndrome (HPS) is a group of rare autosomal recessive disorders characterized by oculocutaneous albinism (OCA) and bleeding diathesis. To date, 11 HPS types have been reported (HPS-1 to HPS-11), each defined by disease-causing variants in specific genes. Variants in the HPS1 gene were found in approximately 15% of HPS patients, most of whom harbor the Puerto Rican founder mutation. In this study, we report six affected individuals from three nonconsanguineous families of Ashkenazi Jewish descent, who presented with OCA and multiple ecchymoses and had normal platelet number and size. Linkage analysis indicated complete segregation to HPS3. Sequencing of the whole coding region and the intron boundaries of HPS3 revealed a heterozygous c.1163+1G>A variant in all six patients. Long-range PCR amplification revealed that all affected individuals also carry a 14,761bp deletion that includes the 5'UTR and exon 1 of HPS3, encompassing regions with long interspersed nuclear elements. The frequency of the c.1163+1G>A splice site variant was found to be 1:200 in the Ashkenazi Jewish population, whereas the large deletion was not detected in 300 Ashkenazi Jewish controls. These results present a novel HPS3 deletion mutation and suggest that the prevalence of HPS-3 in Ashkenazi Jews is more common than previously thought.

9.
Ital J Pediatr ; 48(1): 84, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35658923

RESUMEN

BACKGROUND: Limping and/or refusal to walk is a common complaint in the setting of the pediatric department, with a widely diverse differential diagnosis. An unusual etiology, is that of a hereditary neuropathy. Hereditary neuropathy with liability to pressure palsies (HNPP) is a recurrent, episodic demyelinating neuropathy, most commonly caused by a 17p11.2 chromosomal deletion encompassing the PMP22 gene. METHODS: We pursued chromosomal microarray analysis (CMA) in multiple affected individuals of a single extended family, manifesting a range of phenotypic features consistent with HNPP. RESULTS: A 4.5 years-old boy presented for in-patient evaluation due to refusal to walk. Initial investigations including spine MRI and bone scan failed to yield a conclusive diagnosis. Following family history, which implied an autosomal dominant mode of inheritance, CMA was pursued and confirmed a 17p11.2 deletion in the proband consistent with HNPP. Importantly, following this diagnosis, four additional affected family members were demonstrated to harbor the deletion. Their variable phenotypic features, ranging from a prenatal diagnosis of a 6 months-old sibling, to recurrent paresthesias manifesting in the fourth decade of life, are discussed. CONCLUSIONS: Our experience with the family reported herein demonstrates how a thorough anamnesis can lead to a rare genetic etiology with a favorable prognosis and prevent unnecessary investigations, and underscores HNPP as an uncommon diagnostic possibility in the limping child.


Asunto(s)
Artrogriposis , Neuropatía Hereditaria Motora y Sensorial , Artrogriposis/diagnóstico , Artrogriposis/genética , Variación Biológica Poblacional , Niño , Preescolar , Neuropatía Hereditaria Motora y Sensorial/diagnóstico , Neuropatía Hereditaria Motora y Sensorial/genética , Humanos , Lactante , Masculino , Proteínas de la Mielina/genética
10.
Eur J Med Genet ; 65(6): 104518, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35550444

RESUMEN

Avoidance of fasting and regular ingestion of uncooked-cornstarch have long been the mainstay dietary treatment of Glycogen Storage Disease type Ia (GSD-Ia). However, GSD-Ia patients who despite optimal dietary treatment show poor glycemic control and are intolerant to cornstarch, present a complex clinical challenge. We pursued Whole Exome Sequencing (WES) in three such unrelated patients, to both confirm a molecular diagnosis of GSD-Ia, and seek additional variants in other genes (e.g. genes associated with amylase production) which may explain their persistent symptoms. WES confirmed the GSD-Ia diagnosis, with all three probands harboring the homozygous p.R83C variant in G6PC. While no other significant variants were identified for patients A and B, a homozygous p.G276V variant in the SI gene was detected in patient C, establishing the dual-diagnosis of GSD-Ia and Sucrase-Isomaltase Deficiency. To conclude, we suggest that WES should be considered in GSD-Ia patients who show persistent symptoms despite optimal dietary management.


Asunto(s)
Glucosa-6-Fosfatasa , Enfermedad del Almacenamiento de Glucógeno Tipo I , Glucosa-6-Fosfatasa/genética , Enfermedad del Almacenamiento de Glucógeno Tipo I/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Almidón
11.
Front Pediatr ; 10: 844845, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35433545

RESUMEN

The role of lysine methyltransferases (KMTs) and demethylases (KDMs) in the regulation of chromatin modification is well-established. Recently, deleterious heterozygous variants in KMT5B were implicated in individuals with intellectual disability (ID) and/or autism spectrum disorder. We describe three unrelated patients with global developmental delay (GDD) or ID, macrocephaly and additional features. Using whole exome sequencing, each of the probands was found to harbor a distinct de novo heterozygous disease-causing variant in KMT5B: c.541C > G (p.His181Asp); c.833A > T (p.Asn278Ile); or c.391_394delAAAG (p.Lys131GlufsTer6). We discuss herein their clinical presentations, and compare them to those of previously reported patients. Furthermore, using a three-dimensional computational model of the KMT5B protein, we demonstrate the predicted structural effects of the two missense variants. Our findings support the role of de novo missense and nonsense variants in KMT5B-associated GDD/ID, and suggest that this gene should be considered in the differential diagnosis of neurodevelopmental disorders accompanied by macrocephaly and/or overgrowth.

12.
Mol Syndromol ; 13(1): 45-49, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35221874

RESUMEN

Sanfilippo Syndrome, or mucopolysaccharidosis type III (MPS III), is a group of autosomal-recessive lysosomal storage disorders leading to tissue accumulation of heparan sulfate. MPS III is caused by deficiency in one of 4 enzymes involved in lysosomal degradation of heparan sulfate. Based on the relevant enzyme deficiency, 4 types have been recognized. MPS III constitutes a progressive neurodegenerative and systemic disorder. Parents of children diagnosed with MPS III were interviewed using a retrospective questionnaire based on the known clinical manifestations of MPS III. Eight patients from 4 unrelated families of varied ethnic origin were included. All children were diagnosed with MPS type III-A. Average age at diagnosis was 6.1 years. The most common early clinical manifestations leading to parental suspicion of illness were speech delay and coarse facial features. All children were reported to have global developmental delay, sleep disorders, recurrent infections, hyperactivity, and decreased hearing. The time from first medical inquiry until diagnosis was over 2 years on average, consistent with the delay in diagnosis described in the literature. MPS III children frequently undergo early and repeated ear, nose and throat surgeries, thus we suggest that a high index of suspicion is warranted in relevant clinical circumstances.

13.
Pediatr Nephrol ; 37(7): 1623-1646, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34993602

RESUMEN

BACKGROUND: Genetic kidney diseases contribute a significant portion of kidney diseases in children and young adults. Nephrogenetics is a rapidly evolving subspecialty; however, in the clinical setting, increased use of genetic testing poses implementation challenges. Consequently, we established a national nephrogenetics clinic to apply a multidisciplinary model. METHODS: Patients were referred from different pediatric or adult nephrology units across the country if their primary nephrologist suspected an undiagnosed genetic kidney disease. We determined the diagnostic rate and observed the effect of diagnosis on medical care. We also discuss the requirements of a nephrogenetics clinic in terms of logistics, recommended indications for referral, and building a multidisciplinary team. RESULTS: Over 24 months, genetic evaluation was completed for a total of 74 unrelated probands, with an age range of 10 days to 72 years. The most common phenotypes included congenital anomalies of the kidneys and urinary tract, nephrotic syndrome or unexplained proteinuria, nephrocalcinosis/nephrolithiasis, tubulopathies, and unexplained kidney failure. Over 80% of patients were referred due to clinical suspicion of an undetermined underlying genetic diagnosis. A molecular diagnosis was reached in 42/74 probands, yielding a diagnostic rate of 57%. Of these, over 71% of diagnoses were made via next generation sequencing (gene panel or exome sequencing). CONCLUSIONS: We identified a substantial fraction of genetic kidney etiologies among previously undiagnosed individuals which influenced subsequent clinical management. Our results support that nephrogenetics, a rapidly evolving field, may benefit from well-defined multidisciplinary co-management administered by a designated team of nephrologist, geneticist, and bioinformatician. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Pruebas Genéticas , Enfermedades Renales , Niño , Humanos , Enfermedades Renales/genética , Fenotipo , Derivación y Consulta , Secuenciación del Exoma/métodos
14.
J Med Genet ; 59(7): 691-696, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34215651

RESUMEN

BACKGROUND: The molecular basis of heterotaxy and congenital heart malformations associated with disruption of left-right asymmetry is broad and heterogenous, with over 25 genes implicated in its pathogenesis thus far. OBJECTIVE: We sought to elucidate the molecular basis of laterality disorders and associated congenital heart defects in a cohort of 30 unrelated probands of Arab-Muslim descent, using next-generation sequencing techniques. METHODS: Detailed clinical phenotyping followed by whole-exome sequencing (WES) was pursued for each of the probands and their parents (when available). Sanger sequencing was used for segregation analysis of disease-causing mutations in the families. RESULTS: Using WES, we reached a molecular diagnosis for 17 of the 30 probands (56.7%). Genes known to be associated with heterotaxy and/or primary ciliary dyskinesia, in which homozygous pathogenic or likely pathogenic variants were detected, included CFAP53 (CCDC11), CFAP298 (C21orf59), CFAP300, LRRC6, GDF1, DNAAF1, DNAH5, CCDC39, CCDC40, PKD1L1 and TTC25. Additionally, we detected a homozygous disease causing mutation in DAND5, as a novel recessive monogenic cause for heterotaxy in humans. Three additional probands were found to harbour variants of uncertain significance. These included variants in DNAH6, HYDIN, CELSR1 and CFAP46. CONCLUSIONS: Our findings contribute to the current knowledge regarding monogenic causes of heterotaxy and its associated congenital heart defects and underscore the role of next-generation sequencing techniques in the diagnostic workup of such patients, and especially among consanguineous families.


Asunto(s)
Cardiopatías Congénitas , Síndrome de Heterotaxia , Estudios de Cohortes , Cardiopatías Congénitas/genética , Síndrome de Heterotaxia/genética , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Mutación/genética , Secuenciación del Exoma
15.
Eur J Med Genet ; 65(1): 104383, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34798323

RESUMEN

Osteosclerotic metaphyseal dysplasia is a rare disorder which features osteosclerosis involving long bones, vertebrae, ribs, clavicles and the iliac crests. Additional features which have variably been reported include developmental delay, short stature, hypotonia and seizures. The disease is caused by pathogenic variants in the LRRK1 gene, and inherited in an autosomal recessive manner. We report three siblings (ages 14 years, 11.5 years and 0.9 years), born to consanguineous parents of Arab-Muslim descent, harboring a homozygous pathogenic variant in the LRRK1 gene (Chr15:101068759 AGGGGCT>A, c.5965_5970del TGGGGC, p.Trp1989Gly1990del). The patients displayed variable degrees of skeletal dysplasia, with the oldest sibling most severely affected, and the youngest infant with minor skeletal involvement. Two of the siblings exhibited normal neurological development, while the youngest sibling exhibited global developmental delay. None of the siblings had seizures; however, two of them exhibited nystagmus. Optic nerve involvement has not previously been reported to be part of the clinical spectrum of this disease. The degree of optic nerve involvement did not correlate with the degree of skeletal involvement. This indicates both intra-familial variable expressivity along with a broadening of the spectrum of LRRK1-associated disease. These findings warrant reconsideration of therapeutic strategies, including the possibility of hematopoietic stem cell transplantation (HSCT) as is performed in cases of malignant and intermediate forms of osteopetrosis.


Asunto(s)
Discapacidades del Desarrollo/genética , Atrofia Óptica/genética , Osteopetrosis/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Niño , Femenino , Humanos , Lactante , Masculino , Mutación , Fenotipo , Hermanos
16.
Front Genet ; 13: 1018062, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36699461

RESUMEN

Background: Genetic conditions contribute a significant portion of disease etiologies in children admitted to general pediatric wards worldwide. While exome sequencing (ES) has improved clinical diagnosis and management over a variety of pediatric subspecialties, it is not yet routinely used by general pediatric hospitalists. We aim to investigate the impact of exome sequencing in sequencing-naive children suspected of having monogenic disorders while receiving inpatient care. Methods: We prospectively employed exome sequencing in children admitted to the general pediatric inpatient service at a large tertiary medical center in Israel. Genetic analysis was triggered by general and/or subspecialist pediatricians who were part of the primary inpatient team. We determined the diagnostic yield among children who were referred for exome sequencing and observed the effects of genetic diagnosis on medical care. Results: A total of fifty probands were evaluated and exome sequenced during the study period. The most common phenotypes included were neurodevelopmental (56%), gastrointestinal (34%), and congenital cardiac anomalies (24%). A molecular diagnosis was reached in 38% of patients. Among seven patients (37%), the molecular genetic diagnosis influenced subsequent clinical management already during admission or shortly following discharge. Conclusion: We identified a significant fraction of genetic etiologies among undiagnosed children admitted to the general pediatric ward. Our results support that early application of exome sequencing may be maximized by pediatric hospitalists' high index of suspicion for an underlying genetic etiology, prompting an in-house genetic evaluation. This framework should include a multidisciplinary co-management approach of the primary care team working alongside with subspecialties, geneticists and bioinformaticians.

17.
Nutrients ; 13(10)2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34684524

RESUMEN

BACKGROUND: Dihydrolipoamide dehydrogenase (DLD lipoamide dehydrogenase, the E3 subunit of the pyruvate dehydrogenase complex (PDHC)) is the third catalytic enzyme of the PDHC, which converts pyruvate to acetyl-CoA catalyzed with the introduction of acetyl-CoA to the tricyclic acid (TCA) cycle. In humans, PDHC plays an important role in maintaining glycose homeostasis in an aerobic, energy-generating process. Inherited DLD-E3 deficiency, caused by the pathogenic variants in DLD, leads to variable presentations and courses of illness, ranging from myopathy, recurrent episodes of liver disease and vomiting, to Leigh disease and early death. Currently, there is no consensus on treatment guidelines, although one suggested solution is a ketogenic diet (KD). OBJECTIVE: To describe the use and effects of KD in patients with DLD-E3 deficiency, compared to the standard treatment. RESULTS: Sixteen patients were included. Of these, eight were from a historical cohort, and of the other eight, four were on a partial KD. All patients were homozygous for the D479V (or D444V, which corresponds to the mutated mature protein without the mitochondrial targeting sequence) pathogenic variant in DLD. The treatment with partial KD was found to improve patient survival. However, compared to a historical cohort, the patients' quality of life (QOL) was not significantly improved. CONCLUSIONS: The use of KD offers an advantage regarding survival; however, there is no significant improvement in QOL.


Asunto(s)
Acidosis Láctica/dietoterapia , Acidosis Láctica/mortalidad , Dieta Cetogénica/mortalidad , Nutrición Enteral/mortalidad , Enfermedad de la Orina de Jarabe de Arce/dietoterapia , Enfermedad de la Orina de Jarabe de Arce/mortalidad , Acidosis Láctica/genética , Adolescente , Niño , Preescolar , Dieta Cetogénica/métodos , Nutrición Enteral/métodos , Femenino , Gastrostomía , Humanos , Lactante , Masculino , Enfermedad de la Orina de Jarabe de Arce/genética , Mutación , Calidad de Vida
18.
Orphanet J Rare Dis ; 16(1): 379, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34496908

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) is the causative agent of the current COVID-19 pandemic. Lysosomal storage disorders (LSD) comprise of 70 inherited inborn errors of metabolism. Affected individuals suffer from multi-systemic involvement with variable severity and rate of disease progression between different diseases. Some of the LSDs have established treatments, whether parenteral or oral therapies. The full impact of the COVID-19 pandemic together with the lockdown on the wellbeing and medical management of patients with rare diseases, such as LSDs, is widely unknown. Herein, we describe the effects of the COVID-19 pandemic and its associated mandatory home lockdown on patients with LSDs in Israel. RESULTS: We present a prospective multi-center questionnaire study including 48 LSD patients from four medical centers in Israel. The study objective was to assess the impact of the COVID-19 pandemic restrictions on individuals with LSDs in Israel, as reported by their caregivers. Secondary objectives were to assess the morbidity from SARS CoV-2 in LSD patients and the impact of changes in mood and behavior on compliance to treatment and to assess the relationship between changes in mood to changes in cognition and behavior. Thirty one of 38 patients (82%) who received any kind of regular treatment did not miss treatments. Among patients receiving enzyme replacement therapy (ERT) in the in-hospital setting, 5 patients (20%) experienced treatment disruptions. Four patients had tested positive for SARS-Cov-2 virus infection by PCR. Seven out of the 48 patients (14%) described mood changes with cognitive and motor deterioration during the home quarantine. CONCLUSIONS: We observed high rates of treatment adherence and low morbidity through the COVID-19 pandemic in patients with LSDs in Israel. LSDs patients can be a model for patients with complex chronic diseases requiring routine treatments and surveillance during a pandemic or other disruption of daily routine.


Asunto(s)
COVID-19 , Pandemias , Control de Enfermedades Transmisibles , Humanos , Israel/epidemiología , Lisosomas , Estudios Prospectivos , SARS-CoV-2
19.
Pediatr Nephrol ; 36(12): 4009-4012, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34570271

RESUMEN

BACKGROUND: Kabuki syndrome (KS) is a genetic disorder caused mainly by de novo pathogenic variants in KMT2D or KDM6A, characterized by recognizable facial features, intellectual disability, and multi-systemic involvement, including short stature, microcephaly, hearing loss, cardiac defects, and additional congenital anomalies. While congenital anomalies of the kidneys and urinary tract (CAKUT) are known manifestations of this disorder, studies focused solely on kidney involvement are scarce, and its prevalence is most likely underestimated. This study aimed to describe the prevalence and nature of CAKUT and other renal manifestations, in a cohort of KS patients followed at a single tertiary center. METHODS: All patients who were evaluated at the Sheba Medical Center and received a clinical and/or molecular diagnosis of KS, over a 16-year period (2004-2020), were included. Digital medical records, including ultrasound studies, were reviewed by a team of pediatric nephrologists. RESULTS: Thirteen patients were included in the study, at ages ranging from the neonatal period to 20 years. In eight patients, a pathogenic variant in KMT2D was established. CAKUT were detected in 8/13 (61.5%) of patients and varied from hypospadias, hydronephrosis, or double collecting systems to pelvic kidney, kidney asymmetry, horseshoe kidney, or kidney agenesis. One patient experienced kidney failure necessitating transplantation at 20 years of age. CONCLUSIONS: Our findings underscore the high prevalence of CAKUT and genitourinary involvement in patients with KS and suggest that assessment by pediatric nephrology specialists is warranted as part of the routine multidisciplinary evaluation of newly diagnosed patients. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Anomalías Múltiples , Cara/anomalías , Enfermedades Hematológicas , Sistema Urinario , Enfermedades Vestibulares , Adolescente , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Riñón/diagnóstico por imagen , Masculino , Sistema Urinario/diagnóstico por imagen , Anomalías Urogenitales , Reflujo Vesicoureteral , Adulto Joven
20.
Sci Rep ; 11(1): 19099, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34580403

RESUMEN

Exome sequencing (ES) is an important diagnostic tool for individuals with neurodevelopmental disorders (NDD) and/or multiple congenital anomalies (MCA). However, the cost of ES limits the test's accessibility for many patients. We evaluated the yield of publicly funded clinical ES, performed at a tertiary center in Israel, over a 3-year period (2018-2020). Probands presented with (1) moderate-to-profound global developmental delay (GDD)/intellectual disability (ID); or (2) mild GDD/ID with epilepsy or congenital anomaly; and/or (3) MCA. Subjects with normal chromosomal microarray analysis who met inclusion criteria were included, totaling 280 consecutive cases. Trio ES (proband and parents) was the default option. In 252 cases (90.0%), indication of NDD was noted. Most probands were males (62.9%), and their mean age at ES submission was 9.3 years (range 1 month to 51 years). Molecular diagnosis was reached in 109 probands (38.9%), mainly due to de novo variants (91/109, 83.5%). Disease-causing variants were identified in 92 genes, 15 of which were implicated in more than a single case. Male sex, families with multiple-affected members and premature birth were significantly associated with lower ES yield (p < 0.05). Other factors, including MCA and coexistence of epilepsy, autism spectrum disorder, microcephaly or abnormal brain magnetic resonance imaging findings, were not associated with the yield. To conclude, our findings support the utility of clinical ES in a real-world setting, as part of a publicly funded genetic workup for individuals with GDD/ID and/or MCA.


Asunto(s)
Anomalías Múltiples/diagnóstico , Secuenciación del Exoma/economía , Financiación Gubernamental , Pruebas Genéticas/economía , Trastornos del Neurodesarrollo/diagnóstico , Anomalías Múltiples/economía , Anomalías Múltiples/genética , Adolescente , Adulto , Niño , Preescolar , Análisis Costo-Beneficio , Estudios de Factibilidad , Femenino , Asesoramiento Genético/economía , Asesoramiento Genético/métodos , Asesoramiento Genético/estadística & datos numéricos , Pruebas Genéticas/métodos , Pruebas Genéticas/estadística & datos numéricos , Humanos , Lactante , Recién Nacido , Israel , Masculino , Edad Materna , Trastornos del Neurodesarrollo/economía , Trastornos del Neurodesarrollo/genética , Edad Paterna , Embarazo , Diagnóstico Prenatal/economía , Diagnóstico Prenatal/métodos , Evaluación de Programas y Proyectos de Salud , Estudios Retrospectivos , Centros de Atención Terciaria/economía , Centros de Atención Terciaria/estadística & datos numéricos , Secuenciación del Exoma/estadística & datos numéricos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA