Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proteomics ; 24(11): e2200145, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38214697

RESUMEN

The ability of trophectodermal cells (outer layer of the embryo) to attach to the endometrial cells and subsequently invade the underlying matrix are critical stages of embryo implantation during successful pregnancy establishment. Extracellular vesicles (EVs) have been implicated in embryo-maternal crosstalk, capable of reprogramming endometrial cells towards a pro-implantation signature and phenotype. However, challenges associated with EV yield and direct loading of biomolecules limit their therapeutic potential. We have previously established generation of cell-derived nanovesicles (NVs) from human trophectodermal cells (hTSCs) and their capacity to reprogram endometrial cells to enhance adhesion and blastocyst outgrowth. Here, we employed a rapid NV loading strategy to encapsulate potent implantation molecules such as HB-EGF (NVHBEGF). We show these loaded NVs elicit EGFR-mediated effects in recipient endometrial cells, activating kinase phosphorylation sites that modulate their activity (AKT S124/129, MAPK1 T185/Y187), and downstream signalling pathways and processes (AKT signal transduction, GTPase activity). Importantly, they enhanced target cell attachment and invasion. The phosphoproteomics and proteomics approach highlight NVHBEGF-mediated short-term signalling patterns and long-term reprogramming capabilities on endometrial cells which functionally enhance trophectodermal-endometrial interactions. This proof-of-concept study demonstrates feasibility in enhancing the functional potency of NVs in the context of embryo implantation.


Asunto(s)
Vesículas Extracelulares , Factor de Crecimiento Similar a EGF de Unión a Heparina , Humanos , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Femenino , Vesículas Extracelulares/metabolismo , Endometrio/metabolismo , Endometrio/citología , Esferoides Celulares/metabolismo , Esferoides Celulares/citología , Trofoblastos/metabolismo , Trofoblastos/citología , Implantación del Embrión , Adhesión Celular , Transducción de Señal , Proteómica/métodos , Embarazo
2.
Proteomics ; : e2300056, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698557

RESUMEN

Extracellular vesicles (EVs) are important mediators of embryo attachment and outgrowth critical for successful implantation. While EVs have garnered immense interest in their therapeutic potential in assisted reproductive technology by improving implantation success, their large-scale generation remains a major challenge. Here, we report a rapid and scalable production of nanovesicles (NVs) directly from human trophectoderm cells (hTSCs) via serial mechanical extrusion of cells; these NVs can be generated in approximately 6 h with a 20-fold higher yield than EVs isolated from culture medium of the same number of cells. NVs display similar biophysical traits (morphologically intact, spherical, 90-130 nm) to EVs, and are laden with hallmark players of implantation that include cell-matrix adhesion and extracellular matrix organisation proteins (ITGA2/V, ITGB1, MFGE8) and antioxidative regulators (PRDX1, SOD2). Functionally, NVs are readily taken up by low-receptive endometrial HEC1A cells and reprogram their proteome towards a receptive phenotype that support hTSC spheroid attachment. Moreover, a single dose treatment with NVs significantly enhanced adhesion and spreading of mouse embryo trophoblast on fibronectin matrix. Thus, we demonstrate the functional potential of NVs in enhancing embryo implantation and highlight their rapid and scalable generation, amenable to clinical utility.

4.
Proteomics ; 23(6): e2200107, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36591946

RESUMEN

Implantation success relies on intricate interplay between the developing embryo and the maternal endometrium. Extracellular vesicles (EVs) represent an important player of this intercellular signalling through delivery of functional cargo (proteins and RNAs) that reprogram the target cells protein and RNA landscape. Functionally, the signalling reciprocity of endometrial and embryo EVs regulates the site of implantation, preimplantation embryo development and hatching, antioxidative activity, embryo attachment, trophoblast invasion, arterial remodelling, and immune tolerance. Omics technologies including mass spectrometry have been instrumental in dissecting EV cargo that regulate these processes as well as molecular changes in embryo and endometrium to facilitate implantation. This has also led to discovery of potential cargo in EVs in human uterine fluid (UF) and embryo spent media (ESM) of diagnostic and therapeutic value in implantation success, fertility, and pregnancy outcome. This review discusses the contribution of EVs in functional hallmarks of embryo implantation, and how the integration of various omics technologies is enabling design of EV-based diagnostic and therapeutic platforms in reproductive medicine.


Asunto(s)
Implantación del Embrión , Vesículas Extracelulares , Femenino , Embarazo , Humanos , Implantación del Embrión/fisiología , Vesículas Extracelulares/metabolismo , Desarrollo Embrionario , Endometrio/metabolismo , Trofoblastos/metabolismo
5.
Front Cell Dev Biol ; 10: 1078096, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619864

RESUMEN

A series of cyclical events within the uterus are crucial for pregnancy establishment. These include endometrial regeneration following menses, under the influence of estrogen (proliferative phase), then endometrial differentiation driven by estrogen/progesterone (secretory phase), to provide a microenvironment enabling attachment of embryo (as a hatched blastocyst) to the endometrial epithelium. This is followed by invasion of trophectodermal cells (the outer layer of the blastocyst) into the endometrium tissue to facilitate intrauterine development. Small extracellular vesicles (sEVs) released by endometrial epithelial cells during the secretory phase have been shown to facilitate trophoblast invasion; however, the molecular mechanisms that underline this process remain poorly understood. Here, we show that density gradient purified sEVs (1.06-1.11 g/ml, Alix+ and TSG101+, ∼180 nm) from human endometrial epithelial cells (hormonally primed with estrogen and progesterone vs. estrogen alone) are readily internalized by a human trophectodermal stem cell line and promote their invasion into Matrigel matrix. Mass spectrometry-based proteome analysis revealed that sEVs reprogrammed trophectoderm cell proteome and their cell surface proteome (surfaceome) to support this invasive phenotype through upregulation of pro-invasive regulators associated with focal adhesions (NRP1, PTPRK, ROCK2, TEK), embryo implantation (FBLN1, NIBAN2, BSG), and kinase receptors (EPHB4/B2, ERBB2, STRAP). Kinase substrate prediction highlighted a central role of MAPK3 as an upstream kinase regulating target cell proteome reprogramming. Phosphoproteome analysis pinpointed upregulation of MAPK3 T204/T202 phosphosites in hTSCs following sEV delivery, and that their pharmacological inhibition significantly abrogated invasion. This study provides novel molecular insights into endometrial sEVs orchestrating trophoblast invasion, highlighting the microenvironmental regulation of hTSCs during embryo implantation.

6.
Front Cell Dev Biol ; 9: 734720, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616741

RESUMEN

Extracellular vesicles (EVs) hold great promise as therapeutic modalities due to their endogenous characteristics, however, further bioengineering refinement is required to address clinical and commercial limitations. Clinical applications of EV-based therapeutics are being trialed in immunomodulation, tissue regeneration and recovery, and as delivery vectors for combination therapies. Native/biological EVs possess diverse endogenous properties that offer stability and facilitate crossing of biological barriers for delivery of molecular cargo to cells, acting as a form of intercellular communication to regulate function and phenotype. Moreover, EVs are important components of paracrine signaling in stem/progenitor cell-based therapies, are employed as standalone therapies, and can be used as a drug delivery system. Despite remarkable utility of native/biological EVs, they can be improved using bio/engineering approaches to further therapeutic potential. EVs can be engineered to harbor specific pharmaceutical content, enhance their stability, and modify surface epitopes for improved tropism and targeting to cells and tissues in vivo. Limitations currently challenging the full realization of their therapeutic utility include scalability and standardization of generation, molecular characterization for design and regulation, therapeutic potency assessment, and targeted delivery. The fields' utilization of advanced technologies (imaging, quantitative analyses, multi-omics, labeling/live-cell reporters), and utility of biocompatible natural sources for producing EVs (plants, bacteria, milk) will play an important role in overcoming these limitations. Advancements in EV engineering methodologies and design will facilitate the development of EV-based therapeutics, revolutionizing the current pharmaceutical landscape.

7.
Mol Hum Reprod ; 27(10)2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34524461

RESUMEN

Adequate endometrial stromal cell (ESC) decidualization is vital for endometrial health. Given the importance of extracellular vesicles (EVs) in intercellular communication, we investigated how their protein landscape is reprogrammed and dysregulated during decidual response. Small EVs (sEVs) from human ESC-conditioned media at Day-2 and -14 following decidual stimuli were grouped as well- (WD) or poorly decidualized (PD) based on their prolactin secretion and subjected to mass spectrometry-based quantitative proteomics. On Day 2, in PD- versus WD-ESC-sEVs, 17 sEV- proteins were down-regulated (C5, C6; complement/coagulation cascades, and SERPING1, HRG; platelet degranulation and fibrinolysis) and 39 up-regulated (FLNA, COL1A1; focal adhesion, ENO1, PKM; glycolysis/gluconeogenesis, and RAP1B, MSN; leukocyte transendothelial migration). On Day 14, in PD- versus WD-ESC-sEVs, FLNA was down-regulated while 21 proteins were up-regulated involved in complement/coagulation cascades (C3, C6), platelet degranulation (SERPINA4, ITIH4), B-cell receptor signalling and innate immune response (immunoglobulins). Changes from Days 2 to 14 suggested a subsequent response in PD-ESC-sEVs with 89 differentially expressed proteins mostly involved in complement and coagulation cascades (C3, C6, C5), but no change in WD-ESC-sEVs ESC. Poor decidualization was also associated with loss of crucial sEV-proteins for cell adhesion and invasion (ITGA5, PFN1), glycolysis (ALDOA, PGK1) and cytoskeletal reorganization (VCL, RAC1). Overall, this study indicates varied ESC response even prior to decidualization and provides insight into sEVs-proteomes as a benchmark of well-decidualized ESC. It shows distinct variation in sEV-protein composition depending on the ESC decidual response that is critical for embryo implantation, enabling and limiting trophoblast invasion during placentation and sensing a healthy embryo.


Asunto(s)
Endometrio/metabolismo , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo , Proteoma , Células del Estroma/metabolismo , Adulto , Células Cultivadas , Decidua/metabolismo , Implantación del Embrión , Endometrio/efectos de los fármacos , Endometrio/ultraestructura , Estradiol/farmacología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/ultraestructura , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/ultraestructura , Humanos , Acetato de Medroxiprogesterona/farmacología , Placentación , Embarazo , Proteómica , Células del Estroma/efectos de los fármacos , Células del Estroma/ultraestructura , Factores de Tiempo , Adulto Joven
8.
Proteomics ; 21(13-14): e2000210, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33860638

RESUMEN

Embryo implantation into the receptive endometrium is critical in pregnancy establishment, initially requiring reciprocal signalling between outer layer of the blastocyst (trophectoderm cells) and endometrial epithelium; however, factors regulating this crosstalk remain poorly understood. Although endometrial extracellular vesicles (EVs) are known to signal to the embryo during implantation, the role of embryo-derived EVs remains largely unknown. Here, we provide a comprehensive proteomic characterisation of a major class of EVs, termed small EVs (sEVs), released by human trophectoderm cells (Tsc-sEVs) and their capacity to reprogram protein landscape of endometrial epithelium in vitro. Highly purified Tsc-sEVs (30-200 nm, ALIX+ , TSG101+ , CD9/63/81+ ) were enriched in known players of implantation (LIFR, ICAM1, TAGLN2, WNT5A, FZD7, ROR2, PRICKLE2), antioxidant activity (SOD1, PRDX1/4/6), tissue integrity (EZR, RAC1, RHOA, TNC), and focal adhesions (FAK, ITGA2/V, ITGB1/3). Functionally, Tsc-sEVs were taken up by endometrial cells, altered transepithelial electrical resistance, and upregulated proteins implicated in embryo attachment (ITGA2/V, ITGB1/3), immune regulation (CD59, CD276, LGALS3), and antioxidant activity (GPX1/3/4, PRDX1/2/4/5/6): processes that are critical for successful implantation. Collectively, we provide critical insights into Tsc-sEV-mediated regulation of endometrial function that contributes to our understanding of the molecular basis of implantation.


Asunto(s)
Vesículas Extracelulares , Proteoma , Antígenos B7 , Implantación del Embrión , Endometrio , Células Epiteliales , Femenino , Humanos , Proteínas con Dominio LIM , Proteínas de la Membrana , Embarazo , Proteómica
9.
Proteomics ; 21(13-14): e2000211, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33634576

RESUMEN

Endometrial extracellular vesicles (EVs) are emerging as important players in reproductive biology. However, how their proteome is regulated throughout the menstrual cycle is not known. Such information can provide novel insights into biological processes critical for embryo development, implantation, and successful pregnancy. Using mass spectrometry-based quantitative proteomics, we show that small EVs (sEVs) isolated from uterine lavage of fertile women (UL-sEV), compared to infertile women, are laden with proteins implicated in antioxidant activity (SOD1, GSTO1, MPO, CAT). Functionally, sEVs derived from endometrial cells enhance antioxidant function in trophectoderm cells. Moreover, there was striking enrichment of invasion-related proteins (LGALS1/3, S100A4/11) in fertile UL-sEVs in the secretory (estrogen plus progesterone-driven, EP) versus proliferative (estrogen-driven, E) phase, with several players downregulated in infertile UL-sEVs. Consistent with this, sEVs from EP- versus E-primed endometrial epithelial cells promote invasion of trophectoderm cells. Interestingly, UL-sEVs from fertile versus infertile women carry known players/predictors of embryo implantation (PRDX2, IDHC), endometrial receptivity (S100A4, FGB, SERPING1, CLU, ANXA2), and implantation success (CAT, YWHAE, PPIA), highlighting their potential to inform regarding endometrial status/pregnancy outcomes. Thus, this study provides novel insights into proteome reprograming of sEVs and soluble secretome in uterine fluid, with potential to enhance embryo implantation and hence fertility.


Asunto(s)
Vesículas Extracelulares , Infertilidad Femenina , Implantación del Embrión , Endometrio , Femenino , Fertilidad , Glutatión Transferasa , Humanos , Ciclo Menstrual , Embarazo , Proteoma , Proteómica
10.
Methods Mol Biol ; 2261: 105-149, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33420988

RESUMEN

Extracellular vesicles (EVs) are membrane-enclosed vesicles released by cells. They carry proteins, nucleic acids, and metabolites which can be transferred to a recipient cell, locally or at a distance, to elicit a functional response. Since their discovery over 30 years ago, the functional repertoire of EVs in both physiological (e.g., organ morphogenesis, embryo implantation) and pathological (e.g., cancer, neurodegeneration) conditions has cemented their crucial role in intercellular communication. Moreover, because the cargo encapsulated within circulating EVs remains protected from degradation, their diagnostic as well as therapeutic (such as drug delivery tool) applications have garnered vested interest. Global efforts have been made to purify EV subtypes from biological fluids and in vitro cell culture media using a variety of strategies and techniques, with a major focus on EVs of endocytic origin called exosomes (30-150 nm in size). Given that the secretome comprises of soluble secreted proteins, protein aggregates, RNA granules, and EV subtypes (such as exosomes, shed microvesicles, apoptotic bodies), it is imperative to purify exosomes to homogeneity if we are to perform biochemical and biophysical characterization and, importantly, functional dissection. Besides understanding the composition of EV subtypes, defining molecular bias of how they reprogram target cells also remains of paramount importance in this area of active research. Here, we outline a systematic "how to" protocol (along with useful insights/tips) to obtain highly purified exosomes and perform their biophysical and biochemical characterization. This protocol employs a mass spectrometry-based proteomics approach to characterize the protein composition of exosomes. We also provide insights on different isolation strategies and their usefulness in various downstream applications. We outline protocols for lipophilic labeling of exosomes to study uptake by a recipient cell, investigating cellular reprogramming using proteomics and studying functional response to exosomes in the Transwell-Matrigel™ Invasion assay.


Asunto(s)
Métodos Analíticos de la Preparación de la Muestra , Exosomas/metabolismo , Proteínas/aislamiento & purificación , Proteómica , Espectrometría de Masas en Tándem , Animales , Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Exosomas/ultraestructura , Fibroblastos/metabolismo , Humanos , Neoplasias/metabolismo , Proteolisis
11.
Proteomics ; 19(23): e1800423, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31531940

RESUMEN

Embryo implantation into maternal endometrium is critical for initiation and establishment of pregnancy, requiring developmental synchrony between endometrium and blastocyst. However, factors regulating human endometrial-embryo cross talk and facilitate implantation remain largely unknown. Extracellular vesicles (EVs) are emerging as important mediators of this process. Here, a trophectoderm spheroid-based in vitro model mimicking the pre-implantation human embryo is used to recapitulate important functional aspects of blastocyst implantation. Functionally, human endometrial EVs, derived from hormonally treated cells synchronous with implantation, are readily internalized by trophectoderm cells, regulating adhesive and invasive capacity of human trophectoderm spheroids. To gain molecular insights into mechanisms underpinning endometrial EV-mediated enhancement of implantation, quantitative proteomics reveal critical alterations in trophectoderm cellular adhesion networks (cell adhesion molecule binding, cell-cell adhesion mediator activity, and cell adherens junctions) and metabolic and gene expression networks, and the soluble secretome from human trophectodermal spheroids. Importantly, transfer of endometrial EV cargo proteins to trophectoderm to mediate changes in trophectoderm function is demonstrated. This is highlighted by correlation among endometrial EVs, the trophectodermal proteome following EV uptake, and EV-mediated trophectodermal cellular proteome, important for implantation. This work provides an understanding into molecular mechanisms of endometrial EV-mediated regulation of human trophectoderm functions-fundamental in understanding human endometrium-embryo signaling during implantation.


Asunto(s)
Implantación del Embrión/fisiología , Embrión de Mamíferos/metabolismo , Endometrio/metabolismo , Vesículas Extracelulares/metabolismo , Western Blotting , Adhesión Celular/fisiología , Microscopía por Crioelectrón , Células Epiteliales/metabolismo , Femenino , Humanos , Microscopía Electrónica de Transmisión , Proteoma/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA