RESUMEN
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Asunto(s)
Escherichia coli Enterohemorrágica , Infecciones por Escherichia coli , Colon , Células Endoteliales/química , Células Epiteliales , Glicoesfingolípidos/análisis , Humanos , Riñón , Toxina ShigaRESUMEN
For five decades it has been known that the pentamer of B subunits (choleragenoid) of the cholera toxin (CT) of Vibrio cholerae binds with high preference to the ganglioside GM1 (II3Neu5Ac-Gg4Cer). However, the exact structures of CT-binding GM1 lipoforms of primary human colon epithelial cells (pHCoEpiCs) have not yet been described in detail. The same holds true for generating further GM1 receptor molecules from higher sialylated gangliosides with a GM1 core through the neuraminidase of V. cholerae. To avoid the artificial incorporation of exogenous gangliosides from animal serum harboring GM1 and higher sialylated ganglio-series gangliosides, pHCoEpiCs were cultured in serum-free medium. Thin-layer chromatography overlay binding assays using a choleragenoid combined with electrospray ionization mass spectrometry revealed GM1 lipoforms with sphingosine (d18:1) as the sole sphingoid base linked to C14:0, C16:0, C18:0 or C20:0 fatty acyl chains forming the ceramide (Cer) moieties of the main choleragenoid-binding GM1 species. Desialylation of GD1a (IV3Neu5Ac,II3Neu5Ac-Gg4Cer) and GT1b (IV3Neu5Ac,II3(Neu5Ac)2-Gg4Cer) of pHCoEpiCs by V. cholerae neuraminidase was observed. GD1a-derived GM1 species with stable sphingosine (d18:1) and saturated fatty acyl chains varying in chain length from C16:0 up to C22:0 could be identified, indicating the ingenious interplay between CT and the neuraminidase of V. cholerae recruiting additional GM1 receptors of pHCoEpiCs.
RESUMEN
Shiga toxin (Stx) is released by enterohemorrhagic Escherichia coli (EHEC) into the human intestinal lumen and transferred across the colon epithelium to the circulation. Stx-mediated damage of human kidney and brain endothelial cells and renal epithelial cells is a renowned feature, while the sensitivity of the human colon epithelium towards Stx and the decoration with the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) is a matter of debate. Structural analysis of the globo-series GSLs of serum-free cultivated primary human colon epithelial cells (pHCoEpiCs) revealed Gb4Cer as the major neutral GSL with Cer (d18:1, C16:0), Cer (d18:1, C22:1/C22:0) and Cer (d18:1, C24:2/C24:1) accompanied by minor Gb3Cer with Cer (d18:1, C16:0) and Cer (d18:1, C24:1) as the dominant lipoforms. Gb3Cer and Gb4Cer co-distributed with cholesterol and sphingomyelin to detergent-resistant membranes (DRMs) used as microdomain analogs. Exposure to increasing Stx concentrations indicated only a slight cell-damaging effect at the highest toxin concentration of 1 µg/mL for Stx1a and Stx2a, whereas a significant effect was detected for Stx2e. Considerable Stx refractiveness of pHCoEpiCs that correlated with the rather low cellular content of the high-affinity Stx-receptor Gb3Cer renders the human colon epithelium questionable as a major target of Stx1a and Stx2a.
Asunto(s)
Colon/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Globósidos/metabolismo , Toxina Shiga/metabolismo , Trihexosilceramidas/metabolismo , Línea Celular , Células Cultivadas , Cromatografía en Capa Delgada , Glicoesfingolípidos/metabolismo , Humanos , Espectrometría de Masas , Sintaxina 1/metabolismoRESUMEN
Tubular epithelial cells of the human kidney are considered as targets of Shiga toxins (Stxs) in the Stx-mediated pathogenesis of hemolytic-uremic syndrome (HUS) caused by Stx-releasing enterohemorrhagic Escherichia coli (EHEC). Analysis of Stx-binding glycosphingolipids (GSLs) of primary human renal proximal tubular epithelial cells (pHRPTEpiCs) yielded globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Investigation of detergent-resistant membranes (DRMs) and nonDRMs, serving as equivalents for the liquid-ordered and liquid-disordered membrane phase, respectively, revealed the prevalence of Gb3Cer and Gb4Cer together with cholesterol and sphingomyelin in DRMs, suggesting lipid raft association. Stx1a and Stx2a exerted strong cellular damage with half-maximal cytotoxic doses (CD50) of 1.31 × 102 pg/mL and 1.66 × 103 pg/mL, respectively, indicating one order of magnitude higher cellular cytotoxicity of Stx1a. Surface acoustic wave (SAW) real-time interaction analysis using biosensor surfaces coated with DRM or nonDRM fractions gave stronger binding capability of Stx1a versus Stx2a that correlated with the lower cytotoxicity of Stx2a. Our study underlines the substantial role of proximal tubular epithelial cells of the human kidney being associated with the development of Stx-mediated HUS at least for Stx1a, while the impact of Stx2a remains somewhat ambiguous.
Asunto(s)
Células Epiteliales/efectos de los fármacos , Túbulos Renales Proximales/citología , Toxinas Shiga/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chlorocebus aethiops , Células Epiteliales/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Trihexosilceramidas/metabolismoRESUMEN
Glycosphingolipids (GSLs) consist of a ceramide (Cer) lipid anchor, which is typically composed of the long-chain aminoalcohol sphingosine (d18:1) and a fatty acid (mostly C16-C24) and a sugar moiety harboring to a great extent one to five monosaccharides. GSLs of the globo-series are well-recognized receptors of Shiga toxins (Stxs) released by Stx-producing Escherichia coli (STEC). Receptors for the Stx subtypes Stx1a and Stx2a are globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), whereby Gb3Cer represents their high-affinity and Gb4Cer their low-affinity receptor. In addition to Gb3Cer and Gb4Cer, Gb5Cer and Forssman GSL are further receptors of the Stx2e subtype rendering Stx2e unique among the various Stx subtypes. Thin-layer chromatography (TLC) is a convenient and ubiquitously employed method for analyzing GSL mixtures of unknown composition. In particular, TLC immunochemical overlay detection allows for sensitive identification of Stx-binding GSLs in complex mixtures directly on the TLC plate. For this purpose, specific anti-GSL antibodies or Stxs themselves in conjunction with anti-Stx antibodies can be used. The described protocols of antibody-mediated detection of TLC-separated globo-series GSLs and corresponding identification of Stx-binding globo-series GSLs will provide detailed advice for successful GSL analysis and particularly highlight the power of the TLC overlay technique.
Asunto(s)
Glicoesfingolípidos , Toxina Shiga I/química , Toxina Shiga II/química , Escherichia coli Shiga-Toxigénica/química , Animales , Cromatografía en Capa Delgada , Glicoesfingolípidos/química , Glicoesfingolípidos/aislamiento & purificación , OvinosRESUMEN
Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic-uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.
Asunto(s)
Células Epiteliales/metabolismo , Globósidos/metabolismo , Corteza Renal/metabolismo , Toxina Shiga I/toxicidad , Toxina Shiga II/toxicidad , Trihexosilceramidas/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Células Epiteliales/patología , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Humanos , Corteza Renal/patología , Microdominios de Membrana/efectos de los fármacos , Microdominios de Membrana/metabolismo , Microdominios de Membrana/patología , Cultivo Primario de Células , Unión Proteica , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Escherichia coli Shiga-Toxigénica/patogenicidad , Células VeroRESUMEN
Real-time interaction analysis of H1 hemagglutinin from influenza A H1N1 (A/New York/18/2009) and H7 hemagglutinin from influenza A H7N7 (A/Netherlands/219/03) with sialylated neoglycolipids (neoGLs) was performed using the surface acoustic wave (SAW) technology. The produced neoGLs carried phosphatidylethanolamine (PE) as lipid anchor and terminally sialylated lactose (Lc2, Galß1-4Glc) or neolactotetraose (nLc4, Galß1-4GlcNAcß1-3Galß1-4Glc) harboring an N-acetylneuraminic acid (Neu5Ac). Using α2-6-sialylated neoGLs, H1 and H7 exhibited marginal attachment toward II6Neu5Ac-Lc2-PE, whereas Sambucus nigra lectin (SNL) exhibited strong binding and Maackia amurensis lectin (MAL) was negative in accordance with their known binding preference toward a distal Neu5Acα2-6Gal- and Neu5Acα2-3Gal-residue, respectively. H1 revealed significant binding toward IV6Neu5Ac-nLc4-PE when compared to weak interaction of H7, whereas SNL showed strong and MAL no attachment corresponding to their interaction specificities. Additional controls of MAL and SNL with α2-3-sialylated II3Neu5Ac-Lc2-PE and IV3Neu5Ac-nLc4-PE underscored the reliability of the SAW technology. Pre-exposure of model membranes spiked with α2-6-sialylated neoGLs to Vibrio cholerae neuraminidase substantially reduced the binding of the hemagglutinins and the SNL reference. Collectively, the SAW technology is capable of accurate measuring binding features of hemagglutinins toward neoGL-spiked lipid bilayers, which can be easily loaded to the functionalized biosensor gold surface thereby simulating biological membranes and suggesting promising clinical application for influenza virus research.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H7N7 del Virus de la Influenza A , Hemaglutininas , Reproducibilidad de los Resultados , SonidoRESUMEN
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to "non-hemolytic" anemia.
Asunto(s)
Eritrocitos/microbiología , Eritropoyesis , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Toxinas Shiga/metabolismo , Escherichia coli Shiga-Toxigénica/metabolismo , Animales , Regulación hacia Abajo , Eritrocitos/metabolismo , Eritrocitos/patología , Infecciones por Escherichia coli/sangre , Infecciones por Escherichia coli/patología , Síndrome Hemolítico-Urémico/sangre , Síndrome Hemolítico-Urémico/patología , Interacciones Huésped-Patógeno , Humanos , Toxinas Shiga/sangre , Escherichia coli Shiga-Toxigénica/patogenicidad , Estrés MecánicoRESUMEN
The cardinal virulence factor of human-pathogenic enterohaemorrhagic Escherichia coli (EHEC) is Shiga toxin (Stx), which causes severe extraintestinal complications including kidney failure by damaging renal endothelial cells. In EHEC pathogenesis, the disturbance of the kidney epithelium by Stx becomes increasingly recognised, but how this exactly occurs is unknown. To explore this molecularly, we investigated the Stx receptor content and transcriptomic profile of two human renal epithelial cell lines: highly Stx-sensitive ACHN cells and largely Stx-insensitive Caki-2 cells. Though both lines exhibited the Stx receptor globotriaosylceramide, RNAseq revealed strikingly different transcriptomic responses to an Stx challenge. Using RNAi to silence factors involved in ACHN cells' Stx response, the greatest protection occurred when silencing RAB5A and TRAPPC6B, two host factors that we newly link to Stx trafficking. Silencing these factors alongside YKT6 fully prevented the cytotoxic Stx effect. Overall, our approach reveals novel subcellular targets for potential therapies against Stx-mediated kidney failure.
Asunto(s)
Células Epiteliales/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Riñón/efectos de los fármacos , Toxina Shiga II/farmacología , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Unión al GTP rab5/antagonistas & inhibidores , Células Cultivadas , Células Epiteliales/metabolismo , Perfilación de la Expresión Génica , Humanos , Riñón/metabolismoRESUMEN
Infections of the human intestinal tract with enterohemorrhagic Escherichia coli (EHEC) result in massive extraintestinal complications due to translocation of EHEC-released Shiga toxins (Stxs) from the gut into the circulation. Stx-mediated damage of the cerebral microvasculature raises serious brain dysfunction being the most frequent cause of acute mortality in patients suffering from severe EHEC infections. Stx2a and Stx2e are associated with heavy and mild course of infection, respectively. Stx2a preferentially binds to globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer), while Stx2e prefers globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer). Both glycosphingolipids (GSLs) were detected in detergent-resistant membranes (DRMs) of primary human brain microvascular endothelial cells (pHBMECs) resembling microdomains of the plasma membrane. In this study, we show that Gb3Cer and Gb4Cer of pHBMECs with saturated C16:0, C22:0, and C24:0 fatty acids dominated in DRMs, corresponding to the liquid-ordered membrane phase, whereas lipoforms carrying unsaturated C24:1 and C24:2 fatty acids prevailed in the non-DRM fractions, which correspond to the liquid-disordered membrane phase. Similarly, a shift of the phospholipids from saturated lipoforms in the DRM to unsaturated species in the non-DRM fractions was observed. Real-time biomolecular interaction analysis using affinity-purified Stx2a and Stx2e, recorded with a surface acoustic wave (SAW) biosensor, evidenced high binding strength of both toxins toward DRMs and failure in interaction with non-DRMs. These results support the hypothesis of preferential binding of Stxs toward microdomains harboring GSL receptors carrying saturated fatty acids in their lipid anchors. Collectively, unraveling the precise mechanisms of Stx-microdomain interaction may help to develop antiadhesive compounds to combat Stx-mediated cellular injury.
Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/metabolismo , Microdominios de Membrana/metabolismo , Toxinas Shiga/metabolismo , Células Endoteliales/química , Humanos , Microdominios de Membrana/química , Estructura Molecular , Toxinas Shiga/análisis , Factores de TiempoRESUMEN
Shiga toxin (Stx) producing Escherichia coli (STEC) cause the edema disease in pigs by releasing the swine-pathogenic Stx2e subtype as the key virulence factor. Stx2e targets endothelial cells of animal organs including the kidney harboring the Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer) and globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer). Since the involvement of renal epithelial cells in the edema disease is unknown, in this study, we analyzed the porcine kidney epithelial cell lines, LLC-PK1 and PK-15, regarding the presence of Stx-binding GSLs, their sensitivity towards Stx2e, and the inhibitory potential of Gb3- and Gb4-neoglycolipids, carrying phosphatidylethanolamine (PE) as the lipid anchor, towards Stx2e. Immunochemical and mass spectrometric analysis revealed various Gb3Cer and Gb4Cer lipoforms as the dominant Stx-binding GSLs in both LLC-PK1 and PK-15 cells. A dihexosylceramide with proposed Galα1-4Gal-sequence (Gal2Cer) was detected in PK-15 cells, whereas LLC-PK1 cells lacked this compound. Both cell lines were susceptible towards Stx2e with LLC-PK1 representing an extremely Stx2e-sensitive cell line. Gb3-PE and Gb4-PE applied as glycovesicles significantly reduced the cytotoxic activity of Stx2e towards LLC-PK1 cells, whereas only Gb4-PE exhibited some protection against Stx2e for PK-15 cells. This is the first report identifying Stx2e receptors of porcine kidney epithelial cells and providing first data on their Stx2e-mediated damage suggesting possible involvement in the edema disease.
RESUMEN
Uropathogenic Escherichia coli (UPEC) are the primary cause of urinary tract infections (UTIs) in humans. P-fimbriae are key players for bacterial adherence to the uroepithelium through the Galα1-4Gal-binding PapG adhesin. The three identified classes I, II and III of PapG are supposed to adhere differently to host cell glycosphingolipids (GSLs) of the uroepithelial tract harboring a distal or internal Galα1-4Gal sequence. In this study, GSL binding characteristics were obtained in a nonradioactive adhesion assay using biotinylated E. coli UTI and urine isolates combined with enzyme-linked NeutrAvidin for detection. Initial experiments with reference globotriaosylceramide (Gb3Cer, Galα1-4Galß1-4Glcß1-1Cer), globotetraosylceramide (Gb4Cer, GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) and Forssman GSL (GalNAcα1-3GalNAcß1-3Galα1-4Galß1-4Glcß1-1Cer) revealed balanced adhesion toward the three GSLs for PapG I-mediated attachment. In contrast, E. coli carrying PapG II or PapG III increasingly adhered to growing oligosaccharide chain lengths of Gb3Cer, Gb4Cer and Forssman GSL. Binding studies with GSLs from human A498 kidney and human T24 bladder epithelial cells, both being negative for the Forssman GSL, revealed the less abundant Gb4Cer vs. Gb3Cer as the prevalent receptor in A498 cells of E. coli expressing PapG II or PapG III. On the other hand, T24 cells exhibited a higher relative content of Gb4Cer vs. Gb3Cer alongside dominant binding of PapG II- or PapG III-harboring E. coli toward Gb4Cer and vastly lowered attachment to minor Gb3Cer. Further studies on PapG-mediated interaction with cell surface-exposed GSLs will improve our knowledge on the molecular mechanisms of P-fimbriae-mediated adhesion and may contribute to the development of antiadhesion therapeutics to combat UTIs.
Asunto(s)
Adhesinas de Escherichia coli/metabolismo , Células Epiteliales/metabolismo , Escherichia coli/metabolismo , Proteínas Fimbrias/metabolismo , Glicoesfingolípidos/metabolismo , Riñón/metabolismo , Vejiga Urinaria/metabolismo , Adhesinas de Escherichia coli/química , Sitios de Unión , Células Cultivadas , Células Epiteliales/química , Escherichia coli/química , Proteínas Fimbrias/química , Glicoesfingolípidos/química , Humanos , Riñón/microbiología , Vejiga Urinaria/microbiologíaRESUMEN
A Kunitz-type protease inhibitor (OPI, okra protease inhibitor) has been purified from okra (Abelmoschus esculentus) seeds by a combination of ammonium sulfate precipitation, anion-exchange chromatography and reverse-phase high-performance liquid chromatography. The protein shows an apparent mass of 21 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing condition. OPI exhibits inhibitory activity against trypsin. Analysis of the far-UV circular dichroism spectrum showed that the protein contains approx. 39% beta-sheets but only approx. 5% alpha-helices. The protein is thermally quite stable, and exhibits a cooperative thermal unfolding transition at approx. 70 degree C, as determined by circular dichroism spectroscopy and differential scanning fluorimetry. De novo sequencing of OPI by nanoESI-Q-ToF mass spectrometry (MS) allowed the assignment of about 83% of its primary structure, which indicated that the protein shares 43% sequence identity with a putative 21 kDa trypsin inhibitor from Theobroma bicolor. An intramolecular disulfide linkage between Cys149 and Cys156 was also detected. The protein showed approx 24 and approx 25% sequence identity with alpha-amylase/subtilisin inhibitor from barley and soybean (Kunitz) trypsin inhibitor, respectively. Comparative structure modeling of OPI revealed a structural fold similar to other Kunitz-type TIs. The presence of Cys149-Cys156 disulfide bond as detected by MS and a second disulfide bond connecting Cys44-Cys91, conserved in all Kunitz-type TIs, is also identified in the model.
Asunto(s)
Abelmoschus/química , Péptidos/química , Proteínas de Plantas/química , Semillas/química , Tripsina/química , Abelmoschus/metabolismo , Secuencia de Aminoácidos , Sulfato de Amonio/química , Sitios de Unión , Cromatografía/métodos , Electroforesis en Gel de Gradiente Desnaturalizante , Modelos Moleculares , Peso Molecular , Péptidos/aislamiento & purificación , Proteínas de Plantas/aislamiento & purificación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Semillas/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , TermodinámicaRESUMEN
Gut pathogenic enterohemorrhagic Escherichia coli (EHEC) release Shiga toxins (Stxs) as major virulence factors, which bind to globotriaosylceramide (Gb3Cer, Galα1-4 Galß1-4Glcß1-1Cer) on human target cells. The aim of this study was the production of neoglycolipids (neoGLs) using citrus pectin-derived oligosaccharides and their application as potential inhibitors of Stxs. The preparation of neoGLs starts with the reduction of the carboxylic acid group of the pectic poly(α1-4)GalUA core structure to the corresponding alcohol, followed by hydrolytic cleavage of resulting poly(α1-4)Gal into (α1-4)Galn oligosaccharides and their linkage to phosphatidylethanolamine (PE). Thin-layer chromatography overlay assays of the produced (α1-4)Galn-PE and corresponding Amadori (α1-4)Galn=PE neoGLs revealed distinguishable binding patterns for Stx1a, Stx2a, and Stx2e. Furthermore, prepared neoGLs protected Vero cells against the cytotoxic action of Stxs when applied as multivalent glycovesicles. The produced neoGLs are applicable for differentiation of Stx subtypes and represent a promising approach to combat infections of EHEC by blocking their major toxins.
Asunto(s)
Glucolípidos/farmacología , Pectinas/farmacología , Toxina Shiga/antagonistas & inhibidores , Toxina Shiga/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Glucolípidos/química , Pectinas/química , Toxina Shiga/clasificación , Células VeroRESUMEN
Shiga toxin (Stx)-mediated injury of the kidneys and the brain represent the major extraintestinal complications in humans upon infection by enterohemorrhagic Escherichia coli (EHEC). Damage of renal and cerebral endothelial cells is the key event in the pathogenesis of the life-threatening hemolytic uremic syndrome (HUS). Stxs are AB5 toxins and the B-pentamers of the two clinically important Stx subtypes Stx1a and Stx2a preferentially bind to the glycosphingolipid globotriaosylceramide (Gb3Cer, Galα4Galß4Glcß1Cer) and to less extent to globotetraosylceramide (Gb4Cer, GalNAcß3Galα4Galß4Glcß1), which are expected to reside in lipid rafts in the plasma membrane of the human endothelium. This review summarizes the current knowledge on the Stx glycosphingolipid receptors and their lipid membrane ensemble in primary human brain microvascular endothelial cells (pHBMECs) and primary human renal glomerular endothelial cells (pHRGECs). Increasing knowledge on the precise initial molecular mechanisms by which Stxs interact with cellular targets will help to develop specific therapeutics and/or preventive measures to combat EHEC-caused diseases.
Asunto(s)
Escherichia coli Enterohemorrágica/fisiología , Infecciones por Escherichia coli/metabolismo , Globósidos/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/metabolismo , Trihexosilceramidas/metabolismo , Encéfalo/citología , Células Endoteliales/citología , Escherichia coli Enterohemorrágica/patogenicidad , Infecciones por Escherichia coli/microbiología , Globósidos/química , Síndrome Hemolítico-Urémico/metabolismo , Síndrome Hemolítico-Urémico/microbiología , Interacciones Huésped-Patógeno/fisiología , Humanos , Riñón/citología , Cultivo Primario de Células , Toxina Shiga I/química , Toxina Shiga II/química , Trihexosilceramidas/químicaRESUMEN
Shiga toxins (Stxs) are the major virulence factors of Stx-producing Escherichia coli (STEC), which cause hemorrhagic colitis and severe extraintestinal complications due to injury of renal endothelial cells, resulting in kidney failure. Since kidney epithelial cells are suggested additional targets for Stxs, we analyzed Madin-Darby canine kidney (MDCK) II epithelial cells for presence of Stx-binding glycosphingolipids (GSLs), determined their distribution to detergent-resistant membranes (DRMs), and ascertained the lipid composition of DRM and non-DRM preparations. Globotriaosylceramide and globotetraosylceramide, known as receptors for Stx1a, Stx2a, and Stx2e, and Forssman GSL as a specific receptor for Stx2e, were found to cooccur with SM and cholesterol in DRMs of MDCK II cells, which was shown using TLC overlay assay detection combined with mass spectrometry. The various lipoforms of GSLs were found to mainly harbor ceramide moieties composed of sphingosine (d18:1) and C24:1/C24:0 or C16:0 FA. The cells were highly refractory toward Stx1a, Stx2a, and Stx2e, most likely due to the absence of Stx-binding GSLs in the apical plasma membrane determined by immunofluorescence confocal laser scanning microscopy. The results suggest that the cellular content of Stx receptor GSLs and their biochemical detection in DRM preparations alone are inadequate to predict cellular sensitivity toward Stxs.
Asunto(s)
Membrana Celular/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Glicoesfingolípidos/metabolismo , Toxina Shiga/metabolismo , Toxina Shiga/toxicidad , Animales , Membrana Celular/efectos de los fármacos , Colesterol/metabolismo , Perros , Riñón/citología , Células de Riñón Canino Madin Darby , Fosfolípidos/metabolismoRESUMEN
Shiga toxin (Stx)-producing Escherichia coli (STEC) and enterohemorrhagic E. coli (EHEC) as a human pathogenic subgroup of STEC are characterized by releasing Stx AB5-toxin as the major virulence factor. Worldwide disseminated EHEC strains cause sporadic infections and outbreaks in the human population and swine pathogenic STEC strains represent greatly feared pathogens in pig breeding and fattening plants. Among the various Stx subtypes, Stx1a and Stx2a are of eminent clinical importance in human infections being associated with life-threatening hemorrhagic colitis and hemolytic uremic syndrome, whereas Stx2e subtype is associated with porcine edema disease with a generalized fatal outcome for the animals. Binding toward the glycosphingolipid globotriaosylceramide (Gb3Cer) is a common feature of all Stx subtypes analyzed so far. Here, we report on the development of a matched strategy combining (i) miniaturized one-step affinity purification of native Stx subtypes from culture supernatant of bacterial wild-type strains using Gb3-functionalized magnetic beads, (ii) structural analysis and identification of Stx holotoxins by electrospray ionization ion mobility mass spectrometry (ESI MS), (iii) functional Stx-receptor real-time interaction analysis employing the surface acoustic wave (SAW) technology, and (iv) Vero cell culture assays for determining Stx-caused cytotoxic effects. Structural investigations revealed diagnostic tryptic peptide ions for purified Stx1a, Stx2a, and Stx2e, respectively, and functional analysis resulted in characteristic binding kinetics of each Stx subtype. Cytotoxicity studies revealed differing toxin-mediated cell damage ranked with Stx1a > Stx2a > Stx2e. Collectively, this matched procedure represents a promising clinical application for the characterization of life-endangering Stx subtypes at the protein level.
Asunto(s)
Edematosis Porcina/microbiología , Infecciones por Escherichia coli/microbiología , Síndrome Hemolítico-Urémico/microbiología , Escherichia coli Shiga-Toxigénica/clasificación , Escherichia coli Shiga-Toxigénica/citología , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Chlorocebus aethiops , Humanos , Separación Inmunomagnética/métodos , Viabilidad Microbiana , Escherichia coli Shiga-Toxigénica/química , Sonido , Porcinos , Células VeroRESUMEN
PP2-like chitin binding phloem exudate lectins, abundant in the sieve tube of cucurbits, have been implicated to play key roles in wound sealing and antipathogenic responses of the plant. Here we report the affinity purification, macromolecular characterization and carbohydrate binding properties of a new chitooligosaccharide-specific lectin from the phloem exudate of ivy gourds (Coccinia indica). The protein, CIA24, has a subunit mass of 24â¯kDa. Partial sequence analysis indicated that CIA24 exhibits high homology with CIA17 and other Cucurbitaceae PP2 proteins whereas CD spectroscopic studies suggested that ß-sheets constitute the predominant secondary structure. Temperature dependent CD spectroscopic and differential scanning calorimetric studies revealed that CIA24 is a highly thermostable protein, which undergoes complete unfolding at â¼105⯰C. Isothermal titration calorimetric studies suggested that binding of chitooligosaccharides to CIA24 is a highly exothermic process. The lectin combining site can accommodate upto a tetrasaccharide with the binding stoichiometry (n) close to unity with respect to each protein subunit, whereas for chitohexaose a sharp decrease in the binding stoichiometry (n) to â¼1:0.5 was observed. This suggests that the protein probably undergoes dimerisation in presence of chitohexaose, wherein two protein molecules bind to the oligosaccharides from the reducing and non-reducing end, respectively.
Asunto(s)
Quitina/análogos & derivados , Cucurbitaceae/química , Floema/química , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Quitina/química , Quitina/metabolismo , Quitosano , Cucurbitaceae/metabolismo , Oligosacáridos , Floema/metabolismo , Lectinas de Plantas/metabolismo , Unión Proteica , Especificidad por SustratoRESUMEN
Phloem protein-2 (PP2) is an abundant soluble protein in the sieve elements in plants. Its lectin property was reported in various species. The primary structure of a 17kDa PP2 from Coccinia indica (Coccinia indica agglutinin, CIA17), determined by mass spectrometry, shows extensive homology with PP2 super family phloem lectins. Analysis of mass spectrometric data indicated the presence of 16 potential allelic variants of CIA17 with insignificant divergence in the primary structure. The primary structure contains an intramolecular disulfide bridge between Cys-34 and Cys-51, which is conserved across various cucurbit species and hence likely to be important for carbohydrate binding. CD spectroscopic studies revealed that CIA17 is rich in antiparallel ß-sheets, similar to PP2 proteins from Cucurbita maxima and Arabidopsis thaliana. CD spectra recorded at various temperatures showed very little change in the spectral intensity and shape up to 90°C, suggesting that CIA17 is a highly thermostable protein. Atomic force microscopic studies revealed that CIA17 forms filamentous structures at higher concentrations. In light of these results, we propose that CIA17 and other PP2 proteins play a role in the plant defense against pathogens by directly binding with the chitin cell wall, and also promote wound healing by forming self-assembled filaments.
Asunto(s)
Aglutininas/química , Aglutininas/aislamiento & purificación , Lectinas de Plantas/química , Lectinas de Plantas/aislamiento & purificación , Agregado de Proteínas , Secuencia de Aminoácidos , Cromatografía de Afinidad , Peso Molecular , Análisis de SecuenciaRESUMEN
Shiga toxins (Stxs) released by enterohemorrhagic Escherichia coli (EHEC) into the human colon are the causative agents for fatal outcome of EHEC infections. Colon epithelial Caco-2 and HCT-8 cells are widely used for investigating Stx-mediated intestinal cytotoxicity. Only limited data are available regarding precise structures of their Stx receptor glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), and lipid raft association. In this study we identified Gb3Cer and Gb4Cer lipoforms of serum-free cultivated Caco-2 and HCT-8 cells, chiefly harboring ceramide moieties composed of sphingosine (d18:1) and C16:0, C22:0 or C24:0/C24:1 fatty acid. The most significant difference between the two cell lines was the prevalence of Gb3Cer with C16 fatty acid in HCT-8 and Gb4Cer with C22-C24 fatty acids in Caco-2 cells. Lipid compositional analysis of detergent-resistant membranes (DRMs), which were used as lipid raft-equivalents, indicated slightly higher relative content of Stx receptor Gb3Cer in DRMs of HCT-8 cells when compared to Caco-2 cells. Cytotoxicity assays revealed substantial sensitivity towards Stx2a for both cell lines, evidencing little higher susceptibility of Caco-2 cells versus HCT-8 cells. Collectively, Caco-2 and HCT-8 cells express a plethora of different receptor lipoforms and are susceptible towards Stx2a exhibiting somewhat lower sensitivity when compared to Vero cells.