Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Plant Sci ; 14: 1089706, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866386

RESUMEN

Introduction: Under ongoing climate change, more frequent and severe drought periods accompanied by heat waves are expected in the future. Under these conditions, the tree's survival is conditioned by fast recovery of functions after drought release. Therefore, in the presented study, we evaluated the effect of long-term water reduction in soil on tree water use and growth dynamics of Norway spruce. Methods: The experiment was conducted in two young Norway spruce plots located on suboptimal sites at a low altitude of 440 m a.s.l. In the first plot (PE), 25% of precipitation throughfall was excluded since 2007, and the second one represented the control treatment with ambient conditions (PC). Tree sap flow, stem radial increment, and tree water deficit were monitored in two consecutive growing seasons: 2015-2016, with contrasting hydro-climatic conditions. Results: Trees in both treatments showed relatively isohydric behavior reflected in a strong reduction of sap flow under the exceptional drought of 2015. Nevertheless, trees from PE treatment reduced sap flow faster than PC under decreasing soil water potential, exhibiting faster stomatal response. This led to a significantly lower sap flow of PE, compared to PC in 2015. The maximal sap flow rates were also lower for PE treatment, compared to PC. Both treatments experienced minimal radial growth during the 2015 drought and subsequent recovery of radial growth under the more the humid year of 2016. However, treatments did not differ significantly in stem radial increments within respective years. Discussion: Precipitation exclusion treatment, therefore, led to water loss adjustment, but did not affect growth response to intense drought and growth recovery in the year after drought.

2.
J Vis Exp ; (173)2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34398154

RESUMEN

Leaf area index (LAI) is an essential canopy variable describing the amount of foliage in an ecosystem. The parameter serves as the interface between green components of plants and the atmosphere, and many physiological processes occur there, primarily photosynthetic uptake, respiration, and transpiration. LAI is also an input parameter for many models involving carbon, water, and the energy cycle. Moreover, ground-based in situ measurements serve as the calibration method for LAI obtained from remote sensing products. Therefore, straightforward indirect optical methods are necessary for making precise and rapid LAI estimates. The methodological approach, advantages, controversies, and future perspectives of the newly developed LP 110 optical device based on the relation between radiation transmitted through the vegetation canopy and canopy gaps were discussed in the protocol. Furthermore, the instrument was compared to the world standard LAI-2200 Plant Canopy Analyzer. The LP 110 enables more rapid and more straightforward processing of data acquired in the field, and it is more affordable than the Plant Canopy Analyzer. The new instrument is characterized by its ease of use for both above- and below-canopy readings due to its greater sensor sensitivity, in-built digital inclinometer, and automatic logging of readings at the correct position. Therefore, the hand-held LP 110 device is a suitable gadget for performing LAI estimation in forestry, ecology, horticulture, and agriculture based on the representative results. Moreover, the same device also enables the user to take accurate measurements of incident photosynthetically active radiation (PAR) intensity.


Asunto(s)
Ecosistema , Dispositivos Ópticos , Agricultura , Ecología , Hojas de la Planta
3.
Int J Biometeorol ; 64(9): 1599-1611, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32562043

RESUMEN

Plant growth is affected by light availability, light capture, and the efficiency of light energy utilisation within the photosynthetic uptake processes. The radiation use efficiency (RUE) of four even-aged, fully stocked mature Norway spruce stands along a temperature, precipitation, and altitudinal gradient of the Czech Republic was investigated. A new straightforward, methodological approach involving an analysis of digital hemispherical photographs for RUE estimation was applied. The highest annual RUE value (0.72 g MJ-1) was observed in the stand characterised by the lowest mean annual air temperature, the highest annual amount of precipitation, located at the highest altitude, and with the lowest site index reflecting site fertility. From the viewpoint of global climate change mitigation, this stand fixed 4.14 Mg ha-1 and 13.93 Mg ha-1 of carbon units and CO2 molecules into above-ground biomass, respectively. The lowest RUE value (0.21 g MJ-1) within the studied growing season was found in the stand located at the lowest altitude representing the site with the highest mean air temperature and the lowest amount of precipitation where 1.27 Mg ha-1 and 4.28 Mg ha-1 of carbon units and CO2 molecules, respectively, were fixed. From the tested meteorological variables (mean air temperature, the monthly sums of temperature, precipitation, and air humidity), RUE was only significantly dependent on air temperature. Therefore, global warming can lead to diminishing RUE and carbon sequestration in Norway spruce stands, especially at low altitudes.


Asunto(s)
Cambio Climático , Picea , Carbono , República Checa , Noruega , Transpiración de Plantas , Temperatura , Árboles
4.
Tree Physiol ; 40(7): 943-955, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32268373

RESUMEN

Stem respiration is an important component of an ecosystem's carbon budget. Beside environmental factors, it depends highly on tree energy demands for stem growth. Determination of the relationship between stem growth and stem respiration would help to reveal the response of stem respiration to changing climate, which is expected to substantially affect tree growth. Common measurement of stem radial increment does not record all aspects of stem growth processes, especially those connected with cell wall thickening; therefore, the relationship between stem respiration and stem radial increment may vary depending on the wood cell growth differentiation phase. This study presents results from measurements of stem respiration and increment carried out for seven growing seasons in a young Norway spruce forest. Moreover, rates of carbon allocation to stems were modeled for these years. Stem respiration was divided into maintenance (Rm) and growth respiration (Rg) based upon the mature tissue method. There was a close relationship between Rg and daily stem radial increment (dSRI), and this relationship differed before and after dSRI seasonal maximum, which was around 19 June. Before this date, Rg increased exponentially with dSRI, while after this date logarithmically. This is a result of later maxima of Rg and its slower decrease when compared with dSRI, which is connected with energy demands for cell wall thickening. Rg reached a maxima at the end of June or in July. The maximum of carbon allocation to stem peaked in late summer, when Rg mostly tended to decrease. The overall contribution of Rg to stem CO2 efflux amounted to 46.9% for the growing period from May to September and 38.2% for the year as a whole. This study shows that further deeper analysis of in situ stem growth and stem respiration dynamics is greatly needed, especially with a focus on wood formation on a cell level.


Asunto(s)
Picea , Carbono , Dióxido de Carbono , Ecosistema , Noruega , Tallos de la Planta , Asignación de Recursos , Estaciones del Año , Árboles
5.
J Vis Exp ; (150)2019 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-31524858

RESUMEN

Accurate estimations of leaf area index (LAI), defined as half of the total leaf surface area per unit of horizontal ground surface area, are crucial for describing the vegetation structure in the fields of ecology, forestry, and agriculture. Therefore, procedures of three commercially used methods (litter traps, needle technique, and a plant canopy analyzer) for performing LAI estimation were presented step-by-step. Specific methodological approaches were compared, and their current advantages, controversies, challenges, and future perspectives were discussed in this protocol. Litter traps are usually deemed as the reference level. Both the needle technique and the plant canopy analyzer (e.g., LAI-2000) frequently underestimate LAI values in comparison with the reference. The needle technique is easy to use in deciduous stands where the litter completely decomposes each year (e.g., oak and beech stands). However, calibration based on litter traps or direct destructive methods is necessary. The plant canopy analyzer is a commonly used device for performing LAI estimation in ecology, forestry, and agriculture, but is subject to potential error due to foliage clumping and the contribution of woody elements in the field of view (FOV) of the sensor. Eliminating these potential error sources was discussed. The plant canopy analyzer is a very suitable device for performing LAI estimations at the high spatial level, observing a seasonal LAI dynamic, and for long-term monitoring of LAI.


Asunto(s)
Botánica/métodos , Hojas de la Planta/anatomía & histología , Árboles/anatomía & histología , Estaciones del Año , Tiempo (Meteorología)
6.
Tree Physiol ; 38(9): 1333-1344, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29425384

RESUMEN

This study presents results from continuous measurements of stem CO2 efflux carried out for seven experimental seasons (from May to October) in a young Norway spruce forest. The objectives of the study were to determine variability in the response of stem CO2 efflux to stem temperature over the season and to observe differences in the calculated relationship between stem temperature and CO2 efflux based on full growing season data or on data divided into periods according to stem growth rate. Temperature sensitivity of stem CO2 efflux (Q10) calculated for the established periods ranged between 1.61 and 3.46 and varied over the season, with the lowest values occurring in July and August. Q10 calculated using data from the full growing seasons ranged between 2.30 and 2.94 and was often significantly higher than Q10 calculated for the individual periods. Temperature-normalized stem CO2 efflux (R10) determined using Q10 from growing season data was overestimated when the temperature was below 10 °C and underestimated when the temperature was above 10 °C, compared with R10 calculated using Q10 established for the individual periods. The differences in daily mean R10 calculated by these two approaches ranged between -0.9 and 0.2 µmol CO2 m-2 s-1. The results of this study confirm that long periods for determining the temperature dependence of stem CO2 efflux encompass different statuses of the wood (especially in relation to stem growth). This may cause bias in models using this relationship for estimating stem CO2 efflux as a function of temperature.


Asunto(s)
Dióxido de Carbono/metabolismo , Picea/fisiología , Tallos de la Planta/metabolismo , República Checa , Bosques , Conceptos Meteorológicos , Modelos Biológicos , Tallos de la Planta/crecimiento & desarrollo , Estaciones del Año , Temperatura , Árboles/fisiología
7.
Environ Pollut ; 169: 267-73, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22682306

RESUMEN

Daily stomatal ozone flux to a mountain Norway spruce forest stand at the Bily Kriz experimental site in the Beskydy Mts. (Czech Republic) was modelled using a multiplicative model during the 2009 growing season. The multiplicative model was run with meteorological data for the growing season 2009 and ALADIN-CLIMATE/CZ model data for the 2030 growing season. The exceedance of the flux-based critical level of O(3) (Phytotoxic Ozone Dose) might be lower for Norway spruce at the Bily Kriz experimental site in a future climate (around 2030), due to increased stomatal closure induced by climate change, even when taking into account increased tropospheric background O(3) concentration. In contrast, exceedance of the concentration-based critical level (AOT40) of O(3) will increase with the projected increase in background O(3) concentration. Ozone concentration and stomatal flux of ozone significantly decreased NEP under both present and future climatic conditions, especially under high intensities of solar radiation.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Ozono/metabolismo , Picea/metabolismo , Estomas de Plantas/metabolismo , Árboles/metabolismo , Contaminantes Atmosféricos/análisis , Cambio Climático , Ecosistema , Modelos Teóricos , Noruega , Ozono/análisis , Picea/química , Picea/crecimiento & desarrollo , Estomas de Plantas/química , Estaciones del Año , Árboles/química , Árboles/crecimiento & desarrollo
8.
Environ Pollut ; 159(5): 1024-34, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21177010

RESUMEN

Daily ozone deposition flux to a Norway spruce forest in Czech Republic was measured using the gradient method in July and August 2008. Results were in good agreement with a deposition flux model. The mean daily stomatal uptake of ozone was around 47% of total deposition. Average deposition velocity was 0.39 cm s(-1) and 0.36 cm s(-1) by the gradient method and the deposition model, respectively. Measured and modelled non-stomatal uptake was around 0.2 cm s(-1). In addition, net ecosystem production (NEP) was measured by using Eddy Covariance and correlations with O3 concentrations at 15 m a.g.l., total deposition and stomatal uptake were tested. Total deposition and stomatal uptake of ozone significantly decreased NEP, especially by high intensities of solar radiation.


Asunto(s)
Contaminantes Atmosféricos/análisis , Biomasa , Ozono/análisis , Picea/crecimiento & desarrollo , Estomas de Plantas/metabolismo , Contaminantes Atmosféricos/metabolismo , República Checa , Modelos Químicos , Ozono/metabolismo , Tiempo (Meteorología)
9.
Ann Bot ; 101(3): 469-77, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18057065

RESUMEN

BACKGROUND AND AIMS: Stem and branch respiration, important components of total forest ecosystem respiration, were measured on Norway spruce (Picea abies) trees from May to October in four consecutive years in order (1) to evaluate the influence of temperature on woody tissue CO2 efflux with special focus on variation in Q10 (change in respiration rate resulting from a 10 degrees C increase in temperature) within and between seasons, and (2) to quantify the contribution of above-ground woody tissue (stem and branch) respiration to the carbon balance of the forest ecosystem. METHODS: Stem and branch CO2 efflux were measured, using an IRGA and a closed gas exchange system, 3-4 times per month on 22-year-old trees under natural conditions. Measurements of ecosystem CO2 fluxes were also determined during the whole experiment by using the eddy covariance system. Stem and branch temperatures were monitored at 10-min intervals during the whole experiment. KEY RESULTS: The temperature of the woody tissue of stems and branches explained up to 68% of their CO2 efflux. The mean annual Q10 values ranged from 2.20 to 2.32 for stems and from 2.03 to 2.25 for branches. The mean annual normalized respiration rate, R10, for stems and branches ranged from 1.71 to 2.12 micromol CO2 m(-2)s (-1) and from 0.24 to 0.31 micromol CO2 m(-2) s(-1), respectively. The annual contribution of stem and branch CO2 efflux to total ecosystem respiration were, respectively, 8.9 and 8.1% in 1999, 9.2 and 9.2% in 2000, 7.6 and 8.6% in 2001, and 8.6 and 7.9% in 2002. Standard deviation for both components ranged from 3 to 8% of the mean. CONCLUSIONS: Stem and branch CO2 efflux varied diurnally and seasonally, and were related to the temperature of the woody tissue and to growth. The proportion of CO2 efflux from stems and branches is a significant component of the total forest ecosystem respiration, approx. 8% over the 4 years, and predictive models must take their contribution into account.


Asunto(s)
Dióxido de Carbono/metabolismo , Picea/metabolismo , Tallos de la Planta/metabolismo , Estaciones del Año , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA