Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Pharmaceutics ; 15(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37242644

RESUMEN

The ability of dermatophytes to live in communities and resist antifungal drugs may explain treatment recurrence, especially in onychomycosis. Therefore, new molecules with reduced toxicity that target dermatophyte biofilms should be investigated. This study evaluated nonyl 3,4-dihydroxybenzoate (nonyl) susceptibility and mechanism of action on planktonic cells and biofilms of T. rubrum and T. mentagrophytes. Metabolic activities, ergosterol, and reactive oxygen species (ROS) were quantified, and the expression of genes encoding ergosterol was determined by real-time PCR. The effects on the biofilm structure were visualized using confocal electron microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). T. rubrum and T. mentagrophytes biofilms were susceptible to nonyl and resistant to fluconazole, griseofulvin (all strains), and terbinafine (two strains). The SEM results revealed that nonyl groups seriously damaged the biofilms, whereas synthetic drugs caused little or no damage and, in some cases, stimulated the development of resistance structures. Confocal microscopy showed a drastic reduction in biofilm thickness, and transmission electron microscopy results indicated that the compound promoted the derangement and formation of pores in the plasma membrane. Biochemical and molecular assays indicated that fungal membrane ergosterol is a nonyl target. These findings show that nonyl 3,4-dihydroxybenzoate is a promising antifungal compound.

2.
Future Microbiol ; 17: 281-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35152707

RESUMEN

Aim: Octyl gallate (OG) loaded into a nanostructured lipid system (NLS) was tested for antifungal activity and in vitro and in vivo toxicity. Methods & Results: The features of NLS-OG were analyzed by dynamic light scattering and showed adequate size (132.1 nm) and homogeneity (polydispersity index = 0.200). OG was active against Paraccoccidioides spp., and NLS-OG did not affect antifungal activity. NLS-OG demonstrated reduced toxicity to lung cells and zebrafish embryos compared with OG, whereas NLS was toxic to hepatic cells. OG and NLS-OG did not show toxicity in a Galleria mellonella model at 20 mg/kg. All toxic concentrations were superior to MIC (antifungal activity). Conclusion: These results indicate good anti-Paracoccidioides activity and low toxicity of NLS-OG.


Plain language summary Drugs for the treatment of fungal diseases are limited in number and present side effects, drug interactions, risks for pregnant women and fungal resistance. The authors produced a derivative compound from plants called octyl gallate (OG) and then incorporated it into a nanoparticle lipid system (NLS) for better distribution in biological fluids. NLS-OG was tested against a fungus called Paracoccidioides, which causes lung infections. The toxicity profile of NLS-OG was also evaluated in lung and hepatic cells as well as novel animal models. NLS-OG presented good antifungal activity and low toxicity in lung cells and embryos.


Asunto(s)
Antifúngicos , Paracoccidioides , Animales , Antifúngicos/toxicidad , Ácido Gálico/análogos & derivados , Lípidos , Pez Cebra
3.
Bioorg Chem ; 109: 104668, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33601139

RESUMEN

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Bacillus subtilis/efectos de los fármacos , Línea Celular , Curcumina/química , Diseño de Fármacos , Desarrollo de Medicamentos , Humanos , Pulmón/citología , Estructura Molecular
4.
Microbiologyopen ; 9(9): e1104, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32761800

RESUMEN

Brazil is the biggest producer of sweet oranges and the main exporter of concentrated orange juice in the world. Among the diseases that affect citriculture, Asiatic citrus canker, caused by the bacterial pathogen Xanthomonas citri, represents one of the most significant threats. The current Brazilian legislation regulating the control of citrus canker no longer requires the eradication of affected trees in states where the incidence of the disease is high. Instead, control involves disease control measures, including periodic preventative spraying of copper compounds. The long-term use of copper for plant disease control has raised concerns about environmental accumulation and toxicity, as well as the selective pressure it exerts leading to the emergence of copper-resistant X. citri strains. Here, we evaluated hexyl gallate (G6) as an alternative to copper compounds for citrus plant protection. G6 was able to protect citrus nursery trees against X. citri infection. Thirty days after inoculation, the trees treated with G6 developed 0.5 lesions/cm2 leaf area compared with the 2.84 lesions/cm2 observed in the untreated control trees. Also, G6 did not interfere with germination and root development of tomato, lettuce, and arugula, which is consistent with our previous data showing that G6 is safe for tissue culture cell lines. Membrane permeability tests showed that the primary target of G6 is the bacterial outer membrane. Finally, we could not isolate spontaneous X. citri mutants resistant to G6 nor induce resistance to G6 after long-term exposures to increasing concentrations of the compound, which suggests that G6 may have multiple cellular targets. This study demonstrated that G6 is a promising candidate for the development and use in citrus canker management.


Asunto(s)
Citrus sinensis/microbiología , Enfermedades de las Plantas/prevención & control , Xanthomonas/efectos de los fármacos , Brasil , Permeabilidad de la Membrana Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Germinación/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Xanthomonas/fisiología
5.
Bioorg Chem ; 90: 103031, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31238181

RESUMEN

Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.


Asunto(s)
Antituberculosos/farmacología , Membrana Celular/efectos de los fármacos , Curcumina/análogos & derivados , Curcumina/farmacología , Antituberculosos/síntesis química , Antituberculosos/toxicidad , Bacterias/efectos de los fármacos , Proteínas Bacterianas/antagonistas & inhibidores , Línea Celular Tumoral , Curcumina/toxicidad , Proteínas del Citoesqueleto/antagonistas & inhibidores , ADN/efectos de los fármacos , Estabilidad de Medicamentos , GTP Fosfohidrolasas/antagonistas & inhibidores , Humanos , Pruebas de Sensibilidad Microbiana
6.
Microbiologyopen ; 8(4): e00683, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30051597

RESUMEN

Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti-inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram-positive bacterium Bacillus subtilis. The anti-B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP-dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the ß-diketone moiety, showed antibacterial action against gram-positive and gram-negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra-cellular localization. Finally, we show here experimental evidence for the requirement of the ß-diketone group of curcumin for its interaction with FtsZ.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Curcumina/farmacología , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Pruebas de Sensibilidad Microbiana
7.
Microbiologyopen ; 8(5): e00706, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30085414

RESUMEN

Xanthomonas citri subsp. citri (Xac) is the causative agent of citrus canker, a plant disease that significantly impacts citriculture. In earlier work, we showed that alkylated derivatives of gallic acid have antibacterial action against Xac and target both the cell division protein FtsZ and membrane integrity in Bacillus subtilis. Here, we have purified native XacFtsZ and characterized its GTP hydrolysis and polymerization properties. In a surprising manner, inhibition of XacFtsZ activity by alkyl gallates is not as strong as observed earlier with B. subtilis FtsZ. As the alkyl gallates efficiently permeabilize Xac membranes, we propose that this is the primary mode of antibacterial action of these compounds.


Asunto(s)
Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Proteínas del Citoesqueleto/aislamiento & purificación , Proteínas del Citoesqueleto/metabolismo , Xanthomonas/enzimología , Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Citrus/microbiología , Inhibidores Enzimáticos/metabolismo , Ácido Gálico/farmacología , Guanosina Trifosfato/metabolismo , Hidrólisis , Enfermedades de las Plantas/microbiología , Multimerización de Proteína , Xanthomonas/efectos de los fármacos
8.
Molecules ; 22(10)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994740

RESUMEN

Cinnamaldehyde is a natural product with broad spectrum of antibacterial activity. In this work, it was used as a template for design and synthesis of a series of 17 cinnamylideneacetophenones. Phenolic compounds 3 and 4 exhibited MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) values of 77.9 to 312 µM against Staphylococcus aureus, Streptococcus mutans, and Streptococcus sanguinis. Compounds 2, 7, 10, and 18 presented potent effects against Mycobacterium tuberculosis (57.2 µM ≤ MIC ≤ 70.9 µM). Hydrophilic effects caused by substituents on ring B increased antibacterial activity against Gram-positive species. Thus, log Po/w were calculated by using high-performance liquid chromatography-photodiode array detection (HPLC-PDA) analyses, and cinnamylideneacetophenones presented values ranging from 2.5 to 4.1. In addition, the effects of 3 and 4 were evaluated on pulmonary cells, indicating their moderate toxicity (46.3 µM ≤ IC50 ≤ 96.7 µM) when compared with doxorubicin. Bioactive compounds were subjected to in silico prediction of pharmacokinetic properties, and did not violate Lipinski's and Veber's rules, corroborating their potential bioavailability by an oral route.


Asunto(s)
Acetofenonas/farmacología , Antibacterianos/farmacología , Antituberculosos/farmacología , Acetofenonas/síntesis química , Antibacterianos/síntesis química , Antituberculosos/síntesis química , Línea Celular , Simulación por Computador , Humanos , Pulmón/citología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Streptococcus sanguis/efectos de los fármacos , Relación Estructura-Actividad
9.
Front Microbiol ; 8: 1048, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28659880

RESUMEN

Dodecyl protocatechuate (dodecyl) is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid) that possesses anti-oxidant and antifungal properties. Nanostructured lipid systems (NLS) can potentiate the action of many antifungal agents, reducing the required dose and side effects by improving their activity. This work aimed to evaluate dodecyl protocatechuate loaded into a NLS (NLS+dodecyl) as a strategy for the treatment of Paracoccidioides brasiliensis and P. lutzii in vitro. Antifungal activity against P. brasiliensis and P. lutzii was evaluated using the microdilution technique. NLS+dodecyl showed high antifungal activity with a minimum inhibitory concentration ranging from 0.06 to 0.03 µg/mL; 4- to 16-fold higher than that of free dodecyl. NLS+dodecyl was able to inhibit fungal adhesion of the extracellular artificial matrix proteins (laminin and fibronectin), resulting in 82.4 and 81% inhibition, respectively, an increase of 8-17% compared with free dodecyl. These findings corroborate previous results demonstrating 65 and 74% inhibition of fungal adhesion in pulmonary fibroblast cells by dodecyl and NLS+dodecyl, respectively, representing a 9% increase in inhibition for NLS+dodecyl. Subsequently, cytotoxicity was evaluated using the 0.4% sulforhodamine B assay. NLS+dodecyl did not exhibit cytotoxicity in MRC5 (human pneumocyte) and HepG2 (human hepatic carcinoma) cells, thus increasing the selectivity index for NLS+dodecyl. In addition, cytotoxicity was evaluated in vivo using the Caenorhabditis elegans model; neither dodecyl nor NLS+dodecyl exhibited any toxic effects. Taken together, these results suggest that NLS can be used as a strategy to improve the activity of dodecyl against P. brasiliensis and P. lutzii because it improves antifungal activity, increases the inhibition of fungal adhesion in lung cells and the extracellular matrix in vitro, and does not exhibit any toxicity both in vitro and in vivo.

10.
Front Microbiol ; 6: 390, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25972861

RESUMEN

Alkyl gallates are compounds with reported antibacterial activity. One of the modes of action is binding of the alkyl gallates to the bacterial membrane and interference with membrane integrity. However, alkyl gallates also cause cell elongation and disruption of cell division in the important plant pathogen Xanthomonas citri subsp. citri, suggesting that cell division proteins may be targeted by alkyl gallates. Here, we use Bacillus subtilis and purified B. subtilis FtsZ to demonstrate that FtsZ is a direct target of alkyl gallates. Alkyl gallates disrupt the FtsZ-ring in vivo, and cause cell elongation. In vitro, alkyl gallates bind with high affinity to FtsZ, causing it to cluster and lose its capacity to polymerize. The activities of a homologous series of alkyl gallates with alkyl side chain lengths ranging from five to eight carbons (C5-C8) were compared and heptyl gallate was found to be the most potent FtsZ inhibitor. Next to the direct effect on FtsZ, alkyl gallates also target B. subtilis membrane integrity-however the observed anti-FtsZ activity is not a secondary effect of the disruption of membrane integrity. We propose that both modes of action, membrane disruption and anti-FtsZ activity, contribute to the antibacterial activity of the alkyl gallates. We propose that heptyl gallate is a promising hit for the further development of antibacterials that specifically target FtsZ.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA