Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Elife ; 42015 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-26017639

RESUMEN

A key step in the de novo formation of the embryonic vasculature is the migration of endothelial precursors, the angioblasts, to the position of the future vessels. To form the first axial vessels, angioblasts migrate towards the midline and coalesce underneath the notochord. Vascular endothelial growth factor has been proposed to serve as a chemoattractant for the angioblasts and to regulate this medial migration. Here we challenge this model and instead demonstrate that angioblasts rely on their intrinsic expression of Apelin receptors (Aplr, APJ) for their migration to the midline. We further show that during this angioblast migration Apelin receptor signaling is mainly triggered by the recently discovered ligand Elabela (Ela). As neither of the ligands Ela or Apelin (Apln) nor their receptors have previously been implicated in regulating angioblast migration, we hereby provide a novel mechanism for regulating vasculogenesis, with direct relevance to physiological and pathological angiogenesis.


Asunto(s)
Movimiento Celular/fisiología , Quimiocinas/metabolismo , Células Endoteliales/citología , Células Progenitoras Endoteliales/fisiología , Modelos Biológicos , Neovascularización Fisiológica/fisiología , Proteínas de Pez Cebra/metabolismo , Animales , Clonación Molecular , Cartilla de ADN/genética , Células Progenitoras Endoteliales/metabolismo , Humanos , Hibridación in Situ , Mutagénesis , Pez Cebra
2.
Adv Anat Embryol Cell Biol ; 214: 167-86, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24276894

RESUMEN

Despite their important physiological and pathophysiological functions, lymphatic endothelial cells and lymphatic vessels remain less well studied compared to the blood vascular system. Lymphatic endothelium differentiates from venous blood vascular endothelium after initial arteriovenous differentiation. Only recently by the use of light sheet microscopy, the precise mechanism of separation of the first lymphatic endothelial progenitors from the cardinal vein has been described as delamination followed by mesenchymal cell migration of lymphatic endothelial cells. Dorsolaterally of the embryonic cardinal vein, lymphatic endothelial cells reaggregate to form the first lumenized lymphatic vessels, the dorsal peripheral longitudinal vessel and the more ventrally positioned primordial thoracic duct. Despite this progress in our understanding of the first lymph vessel formation, intravital observation of lymphatic vessel behavior in the intact organism, during development and in the adult, is prerequisite to a precise understanding of this tissue. Transgenic models and two-photon microscopy, in combination with optical windows, have made live intravital imaging possible: however, new imaging modalities and novel approaches promise gentler, more physiological, and longer intravital imaging of lymphatic vessels.


Asunto(s)
Endotelio Linfático/embriología , Linfangiogénesis , Vasos Linfáticos/embriología , Microscopía/métodos , Animales , Plaquetas/fisiología , Proteínas de Unión al Calcio/fisiología , Imagenología Tridimensional , Vasos Linfáticos/fisiología , Mesodermo/fisiología , Ratones , Proteínas Supresoras de Tumor/fisiología , Factor C de Crecimiento Endotelial Vascular/fisiología
3.
EMBO J ; 32(5): 629-44, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23299940

RESUMEN

During mammalian development, a subpopulation of endothelial cells in the cardinal vein (CV) expresses lymphatic-specific genes and subsequently develops into the first lymphatic structures, collectively termed as lymph sacs. Budding, sprouting and ballooning of lymphatic endothelial cells (LECs) have been proposed to underlie the emergence of LECs from the CV, but the exact mechanisms of lymph vessel formation remain poorly understood. Applying selective plane illumination-based ultramicroscopy to entire wholemount-immunostained mouse embryos, we visualized the complete developing vascular system with cellular resolution. Here, we report emergence of the earliest detectable LECs as strings of loosely connected cells between the CV and superficial venous plexus. Subsequent aggregation of LECs resulted in formation of two distinct, previously unidentified lymphatic structures, the dorsal peripheral longitudinal lymphatic vessel (PLLV) and the ventral primordial thoracic duct (pTD), which at later stages formed a direct contact with the CV. Providing new insights into their function, we found vascular endothelial growth factor C (VEGF-C) and the matrix component CCBE1 indispensable for LEC budding and migration. Altogether, we present a significantly more detailed view and novel model of early lymphatic development.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Embrión de Mamíferos/citología , Endotelio Linfático/citología , Endotelio Vascular/citología , Linfangiogénesis , Proteínas Supresoras de Tumor/fisiología , Factor C de Crecimiento Endotelial Vascular/fisiología , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Venas/citología , Animales , Movimiento Celular , Proliferación Celular , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/ultraestructura , Endotelio Linfático/metabolismo , Endotelio Linfático/ultraestructura , Endotelio Vascular/metabolismo , Endotelio Vascular/ultraestructura , Técnica del Anticuerpo Fluorescente , Técnicas para Inmunoenzimas , Vasos Linfáticos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Venas/metabolismo , Venas/ultraestructura
4.
Dev Cell ; 22(2): 430-45, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22306086

RESUMEN

Lymphatic valves are essential for efficient lymphatic transport, but the mechanisms of early lymphatic-valve morphogenesis and the role of biomechanical forces are not well understood. We found that the transcription factors PROX1 and FOXC2, highly expressed from the onset of valve formation, mediate segregation of lymphatic-valve-forming cells and cell mechanosensory responses to shear stress in vitro. Mechanistically, PROX1, FOXC2, and flow coordinately control expression of the gap junction protein connexin37 and activation of calcineurin/NFAT signaling. Connexin37 and calcineurin are required for the assembly and delimitation of lymphatic valve territory during development and for its postnatal maintenance. We propose a model in which regionally increased levels/activation states of transcription factors cooperate with mechanotransduction to induce a discrete cell-signaling pattern and morphogenetic event, such as formation of lymphatic valves. Our results also provide molecular insights into the role of endothelial cell identity in the regulation of vascular mechanotransduction.


Asunto(s)
Calcineurina/metabolismo , Conexinas/metabolismo , Factores de Transcripción Forkhead/fisiología , Proteínas de Homeodominio/fisiología , Linfangiogénesis/fisiología , Vasos Linfáticos/citología , Mecanotransducción Celular/fisiología , Proteínas Supresoras de Tumor/fisiología , Animales , Western Blotting , Calcineurina/genética , Proliferación Celular , Conexinas/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Proteína alfa-4 de Unión Comunicante
5.
Biochem Soc Trans ; 39(6): 1674-81, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22103506

RESUMEN

Lymphatic vessels, the second vascular system of higher vertebrates, are indispensable for fluid tissue homoeostasis, dietary fat resorption and immune surveillance. Not only are lymphatic vessels formed during fetal development, when the lymphatic endothelium differentiates and separates from blood endothelial cells, but also lymphangiogenesis occurs during adult life under conditions of inflammation, wound healing and tumour formation. Under all of these conditions, haemopoietic cells can exert instructive influences on lymph vessel growth and are essential for the vital separation of blood and lymphatic vessels. LECs (lymphatic endothelial cells) are characterized by expression of a number of unique genes that distinguish them from blood endothelium and can be utilized to drive reporter genes in a lymph endothelial-specific fashion. In the present paper, we describe the Prox1 (prospero homeobox protein 1) promoter-driven expression of the fluorescent protein mOrange2, which allows the specific intravital visualization of lymph vessel growth and behaviour during mouse fetal development and in adult mice.


Asunto(s)
Genes Reporteros/genética , Proteínas de Homeodominio/genética , Linfangiogénesis , Vasos Linfáticos/fisiología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Regiones Promotoras Genéticas/genética , Proteínas Supresoras de Tumor/genética , Animales , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA