Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
ACS Nano ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105696

RESUMEN

Nanomedicine has long pursued the goal of targeted delivery to specific organs and cell types but has yet to achieve this goal with the vast majority of targets. One rare example of success in this pursuit has been the 25+ years of studies targeting the lung endothelium using nanoparticles conjugated to antibodies against endothelial surface molecules. However, here we show that such "endothelial-targeted" nanocarriers also effectively target the lungs' numerous marginated neutrophils, which reside in the pulmonary capillaries and patrol for pathogens. We show that marginated neutrophils' uptake of many of these "endothelial-targeted" nanocarriers is on par with endothelial uptake. This generalizes across diverse nanomaterials and targeting moieties and was even found with physicochemical lung tropism (i.e., without targeting moieties). Further, we observed this in ex vivo human lungs and in vivo healthy mice, with an increase in marginated neutrophil uptake of nanoparticles caused by local or distant inflammation. These findings have implications for nanomedicine development for lung diseases. These data also suggest that marginated neutrophils, especially in the lungs, should be considered a major part of the reticuloendothelial system (RES), with a special role in clearing nanoparticles that adhere to the lumenal surfaces of blood vessels.

2.
Res Pract Thromb Haemost ; 8(4): 102472, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39036672

RESUMEN

Background: Five secreted platelet protein disulfide isomerases (PDIs) and 1 transmembrane PDI regulate platelet function and thrombosis. Thioredoxin-related transmembrane protein 1 (TMX1) was the first member of the PDI family found to negatively regulate platelet aggregation and platelet accumulation in vivo. The effect of TMX1 on coagulation is unknown. Objectives: To determine the effect of TMX1 on coagulation. Methods: TMX1-/- mice were used to study platelet accumulation and fibrin deposition in vivo in the laser-induced thrombosis injury model. Annexin V deposition at the site of vascular injury was studied using conditional TMX1 knockout mice. Annexin V binding to platelets was studied using human platelets, anti-TMX1 antibodies, and TMX1-deficient platelets. Results: TMX1-/- mice had increased fibrin deposition that was reversed with infusion of recombinant TMX1. Infusion of recombinant TMX1 inhibited platelet accumulation and fibrin deposition in wild-type mice and inhibited fibrin deposition in ß3-null mice. Platelet accumulation is absent in ß3-null mice, suggesting that TMX1 inhibits coagulation independently of platelets. Annexin V binding was increased in activated human platelets incubated with an anti-TMX1 antibody and mouse platelets lacking TMX1. Addition of recombinant TMX1 decreased annexin V binding to platelets. Annexin V binding was increased at the site of vascular injury in Tie2-Cre/TMX1fl/fl mice deficient in endothelial cell TMX1. Conclusion: TMX1 decreases coagulation at the site of vascular injury and negatively regulates phosphatidylserine exposure on endothelial cells and platelets.

3.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39026880

RESUMEN

Venous thrombosis (VT) is a common vascular disease associated with reduced survival and a high recurrence rate. Previous studies have shown that the accumulation of platelets and neutrophils at sites of endothelial cell activation is a primary event in VT, but a role for platelet αIIbß3 in the initiation of venous thrombosis has not been established. This task has been complicated by the increased bleeding linked to partial agonism of current αIIbß3 inhibitory drugs such as tirofiban (Aggrastat ® ). Here, we show that m-tirofiban, an engineered version of tirofiban, is not a partial agonist of αIIbß3. This is based on its cryo-EM structure in complex with human full-length αIIbß3 and its inability to increase expression of an activation-sensitive epitope on platelet αIIbß3. m-tirofiban abolished agonist-induced platelet aggregation ex vivo at concentrations that preserved clot retraction and markedly suppressed the accumulation of platelets, neutrophils, and fibrin on thrombin-activated endothelium in real-time using intravital microscopy in a mouse model of venous thrombogenesis. Unlike tirofiban, however, m-tirofiban did not increase bleeding at the thrombosis-inhibitory dose. These findings establish a key role for αIIbß3 in the initiation of VT, provide a guiding principle for designing potentially safer inhibitors for other integrins, and suggest that pure antagonists of αIIbß3 like m-tirofiban merit further consideration as potential thromboprophylaxis agents in patients at high-risk for VT and hemorrhage.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38860847

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PAs). Central to the remodeling process is a switch of pulmonary vascular cells to a proliferative, apoptosis-resistant phenotype. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of urokinase-type and tissue-type plasminogen activators (uPA and tPA), but its role in PAH is unsettled. Here, we report that: (1) PAI-1 is deficient in remodeled small PAs and in early-passage PA smooth muscle and endothelial cells (PASMCs and PAECs) from subjects with PAH compared to controls; (2) PAI-1-/- mice spontaneously develop pulmonary vascular remodeling associated with up-regulation of mTORC1 signaling, pulmonary hypertension (PH), and right ventricle (RV) hypertrophy; and (3) pharmacological inhibition of uPA in human PAH PASMCs suppresses pro-proliferative mTORC1 and SMAD3 signaling, restores PAI-1 levels, reduces proliferation and induces apoptosis in vitro, and prevents the development of SU5416/hypoxia-induced PH and RV hypertrophy in vivo in mice. These data strongly suggest that down-regulation of PAI-1 in small PAs promotes vascular remodeling and PH due to unopposed activation of uPA and consequent up-regulation of mTOR and TGF-b signaling in PASMCs, and call for further studies to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate and/or reverse pulmonary vascular remodeling and PH.

5.
bioRxiv ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38895231

RESUMEN

Many aspects of thrombopoiesis, the release of platelets from megakaryocytes (Mks), remain under debate, including where this process occurs. Murine lung in situ -microscopy studies suggested that a significant fraction of circulating platelets were released from lung-entrapped, marrow-derived Mks. We now confirm these in situ studies that endogenous mMks are entrapped in the lungs and show that intravenously infused in vitro -differentiated, mature murine (m) and human (h) Mks are similarly entrapped followed by shedding of their cytoplasm over ∼30 minutes with a peak number of released platelets occurring 1.5-4 hours later. However, while infused Mks from both species shed large intrapulmonary cytoplasmic fragments that underwent further processing into platelet-sized fragments, the two differed: many mMks escaped from and then recycled back to the lungs, while most hMks were enucleated upon first intrapulmonary passage. Infused immature hMks, inflammatory hMks, umbilical cord-blood-derived hMks and immortalized Mk progenitor cell (imMKCL)-derived hMks were also entrapped in the lung of recipient mice, and released their cytoplasm, but did so to different degrees. Intraarterial infused hMks resulted in few Mks being entrapped in tissues other than the lungs and was accompanied by a blunted and delayed rise in circulating human platelets. These studies demonstrate that the lung entraps and processes both circulating Mks and released large cytoplasmic fragments consistent with a recent lung/heart murine study and support a pulmonary-centric "catch-and-release" model of thrombopoiesis. Thus, thrombopoiesis is a drawn-out process with the majority of cytoplasmic processing derived from Mks occurring in the pulmonary bed. Key Points: Infused in vitro -differentiated megakaryocytes synchronously release cytoplasmic fragments highly selectively in the pulmonary bed. Large, released megakaryocyte fragments recycle to the lungs, undergo further fission, terminally form platelets.

6.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798354

RESUMEN

Platelets are highly reactive fragments of megakaryocytes that play a fundamental role in thrombosis and hemostasis. Predictably, all conventional anti-platelet therapies elicit bleeding, raising the question whether the thrombotic activity of platelets can be targeted separately. In this study, we describe a novel approach of inhibiting platelet activation through the use of bispecific single-chain variable fragments (bi-scFvs), termed cis-acting platelet receptor inhibitors (CAPRIs) that harness the immunoreceptor tyrosine-based inhibition motif (ITIM)-containing co-inhibitory receptor G6b-B (G6B) to suppress immunoreceptor tyrosine-based (ITAM)-containing receptor-mediated platelet activation. CAPRI-mediated hetero-clustering of G6B with either the ITAM-containing GPVI-FcR γ-chain complex or FcγRIIA (CD32A) inhibited collagen- or immune complex-induced platelet aggregation. G6B-GPVI CAPRIs strongly and specifically inhibited thrombus formation on collagen under arterial shear, whereas G6B-CD32A CAPRI strongly and specifically inhibited thrombus formation to heparin-induced thrombocytopenia, vaccine-induced thrombotic thrombocytopenia and antiphospholipid syndrome complexes on Von Willebrand Factor-coated surfaces and photochemical-injured endothelial cells under arterial shear. Our findings provide proof-of-concept that CAPRIs are highly effective at inhibiting ITAM receptor-mediated platelet activation, laying the foundation for a novel family of anti-thrombotic therapeutics with potentially improved efficacy and fewer bleeding outcomes compared with current anti-platelet therapies. .

7.
Blood Adv ; 8(14): 3798-3809, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38805575

RESUMEN

ABSTRACT: Fibrinolytics delivered into the general circulation lack selectivity for nascent thrombi, reducing efficacy and increasing the risk of bleeding. Urokinase-type plasminogen activator (uPA) transgenically expressed within murine platelets provided targeted thromboprophylaxis without causing bleeding but is not clinically feasible. Recent advances in generating megakaryocytes prompted us to develop a potentially clinically relevant means to produce "antithrombotic" platelets from CD34+ hematopoietic stem cell-derived in vitro-grown megakaryocytes. CD34+ megakaryocytes internalize and store in alpha granules (α-granules) single-chain uPA (scuPA) and a plasmin-resistant thrombin-activatable variant (uPAT). Both uPAs colocalized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3, but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34+ megakaryocytes was mediated, in part, via LRP1 and αIIbß3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV but not endogenous VWF in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid artery injury model in nonobese diabetic-severe combined immunodeficiency IL2rγnull (NSG) mice homozygous for VWFR1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein Ibα) to test whether platelets derived from scuPA- or uPAT-megakaryocytes would prevent thrombus formation. NSG/VWFR1326H mice exhibited a lower thrombotic burden after carotid artery injury compared with NSG mice unless infused with human platelets or megakaryocytes, whereas intravenous injection of uPA-megakaryocytes generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies describe the use of in vitro-generated megakaryocytes as a potential platform for delivering uPA or other ectopic proteins within platelet α-granules to sites of vascular injury.


Asunto(s)
Megacariocitos , Activador de Plasminógeno de Tipo Uroquinasa , Megacariocitos/metabolismo , Megacariocitos/citología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Humanos , Animales , Ratones , Fibrinólisis/efectos de los fármacos , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Plaquetas/metabolismo , Trombosis/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Gránulos Citoplasmáticos/metabolismo , Antígenos CD34/metabolismo
8.
Blood Adv ; 8(7): 1699-1714, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38330198

RESUMEN

ABSTRACT: Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germ line RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMMs), is associated with thrombocytopenia, platelet dysfunction, and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen, and immunoglobulin G (IgG) were decreased in a patient with FPDMM. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen, and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, small interfering RNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared with control cells, with increases in caveolin-1 and flotillin-1 (2 independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes), and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 KD resulted in increased colocalization of albumin with flotillin and fibrinogen with RAB11, suggesting altered trafficking of both proteins. The increased uptake of albumin and fibrinogen, as well as levels of caveolin-1, flotillin-1, LAMP2, and IFITM3, were recapitulated by short hairpin RNA RUNX1 KD in CD34+-derived MK. To our knowledge, these studies provide first evidence that platelet endocytosis of albumin and fibrinogen is impaired in some patients with RUNX1-haplodeficiency and suggest that megakaryocytes have enhanced endocytosis with defective trafficking, leading to loss of these proteins by distinct mechanisms. This study provides new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1-haplodeficiency.


Asunto(s)
Trastornos de la Coagulación Sanguínea Heredados , Trastornos de las Plaquetas Sanguíneas , Hemostáticos , Leucemia Eritroblástica Aguda , Leucemia Mieloide Aguda , Humanos , Megacariocitos/metabolismo , Caveolina 1/metabolismo , Fibrinógeno/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Endocitosis , Albúminas/metabolismo , Inmunoglobulina G , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
9.
J Thromb Haemost ; 22(3): 818-833, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38029855

RESUMEN

BACKGROUND: Activated platelets secrete platelet factor 4 (PF4), which contributes to viral pathogenesis. Recently, we reported the proviral role of PF4 in replication of closely related flaviviruses, Japanese encephalitis virus (JEV) and dengue virus (DENV). OBJECTIVES: This study aimed to investigate the detailed mechanism of PF4-mediated virus replication. METHODS: PF4-/- or wild-type (WT) mice were infected with JEV, and host defense mechanisms, including autophagic/interferon (IFN) responses, were assessed. WT mice were pretreated with the CXCR3 antagonist AMG487 that inhibits PF4:CXCR3 pathway. This pathway was tested in PF4-/- monocytes infected with DENV or in monocytes isolated from patients with DENV infection. RESULTS: PF4-/- mice infected with JEV showed reduced viral load and improved brain inflammation and survival. PF4-/- mice synthesized more IFN-α/ß with higher expression of phosphorylated IRF3 in the brain. PF4 treatment decreased IRF-3/7/9 and IFN-α/ß expression and suppressed autophagic LC3-II flux and lysosomal degradation of viral proteins in JEV-infected cells. PF4 increased the expression of P-mTOR, P-p38, and P-ULK1Ser757 and decreased expression of LC3-II. Decreased autophagosome-lysosome fusion in turn promoted DENV2 replication. The above processes were reversed by AMG487. Uninfected PF4-/- monocytes showed elevated LC3-II and autophagosome-lysosome fusion. Microglia of JEV-infected PF4-/- mice exhibited elevated LC3-II inversely related to viral load. Similarly, monocytes from PF4-/- mice showed reduced infection by DENV2. In patients with DENV infection, higher plasma PF4 and viral load were inversely correlated with LC3-II, LAMP-1, and lysosomal degradation of DENV-NS1 in monocytes during the febrile phase. CONCLUSION: These studies suggest that PF4 deficiency or inhibition of the PF4:CXCR3 pathway prevents JEV and DENV infection. The studies also highlight the PF4:CXCR3 axis as a potential target to develop treatment regimens against flaviviruses.


Asunto(s)
Dengue , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Pirimidinonas , Animales , Humanos , Ratones , Acetamidas , Dengue/tratamiento farmacológico , Dengue/metabolismo , Virus de la Encefalitis Japonesa (Especie)/fisiología , Encefalitis Japonesa/tratamiento farmacológico , Factores Inmunológicos , Factor Plaquetario 4 , Receptores CXCR3
10.
bioRxiv ; 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38106191

RESUMEN

Our prior finding that uPA endogenously expressed and stored in the platelets of transgenic mice prevented thrombus formation without causing bleeding, prompted us to develop a potentially clinically relevant means of generating anti-thrombotic human platelets in vitro from CD34 + hematopoietic cell-derived megakaryocytes. CD34 + -megakaryocytes internalize and store in α-granules single-chain uPA (scuPA) and a uPA variant modified to be plasmin-resistant, but thrombin-activatable, (uPAT). Both uPAs co-localized with internalized factor V (FV), fibrinogen and plasminogen, low-density lipoprotein receptor-related protein 1 (LRP1), and interferon-induced transmembrane protein 3 (IFITM3), but not with endogenous von Willebrand factor (VWF). Endocytosis of uPA by CD34 + -\megakaryocytes was mediated in part via LRP1 and αIIbß3. scuPA-containing megakaryocytes degraded endocytosed intragranular FV, but not endogenous VWF, in the presence of internalized plasminogen, whereas uPAT-megakaryocytes did not significantly degrade either protein. We used a carotid-artery injury model in NOD-scid IL2rγnull (NSG) mice homozygous for VWF R1326H (a mutation switching binding VWF specificity from mouse to human glycoprotein IbmlIX) to test whether platelets derived from scuPA-MKs or uPAT-Mks would prevent thrombus formation. NSG/VWF R1326H mice exhibited a lower thrombotic burden after carotid artery injury compared to NSG mice unless infused with human platelets or MKs, whereas intravenous injection of either uPA-containing megakaryocytes into NSG/VWF R1326H generated sufficient uPA-containing human platelets to lyse nascent thrombi. These studies suggest the potential to deliver uPA or potentially other ectopic proteins within platelet α-granules from in vitro- generated megakaryocytes. Key points: Unlike platelets, in vitro-grown megakaryocytes can store exogenous uPA in its α-granules.uPA uptake involves LRP1 and αIIbß3 receptors and is functionally available from activated platelets.

11.
medRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961544

RESUMEN

Platelet α-granules have numerous proteins, some synthesized by megakaryocytes (MK) and others not synthesized but incorporated by endocytosis, an incompletely understood process in platelets/MK. Germline RUNX1 haplodeficiency, referred to as familial platelet defect with predisposition to myeloid malignancies (FPDMM), is associated with thrombocytopenia, platelet dysfunction and granule deficiencies. In previous studies, we found that platelet albumin, fibrinogen and IgG levels were decreased in a FPDMM patient. We now show that platelet endocytosis of fluorescent-labeled albumin, fibrinogen and IgG is decreased in the patient and his daughter with FPDMM. In megakaryocytic human erythroleukemia (HEL) cells, siRNA RUNX1 knockdown (KD) increased uptake of these proteins over 24 hours compared to control cells, with increases in caveolin-1 and flotillin-1 (two independent regulators of clathrin-independent endocytosis), LAMP2 (a lysosomal marker), RAB11 (a marker of recycling endosomes) and IFITM3. Caveolin-1 downregulation in RUNX1-deficient HEL cells abrogated the increased uptake of albumin, but not fibrinogen. Albumin, but not fibrinogen, partially colocalized with caveolin-1. RUNX1 knockdown increased colocalization of albumin with flotillin and of fibrinogen with RAB11 suggesting altered trafficking of both. The increased albumin and fibrinogen uptake and levels of caveolin-1, flotillin-1, LAMP2 and IFITM3 were recapitulated by shRNA RUNX1 knockdown in CD34 + -derived MK. These studies provide the first evidence that in RUNX1- haplodeficiency platelet endocytosis of albumin and fibrinogen is impaired and that megakaryocytes have enhanced endocytosis with defective trafficking leading to loss of these proteins by distinct mechanisms. They provide new insights into mechanisms governing endocytosis and α-granule deficiencies in RUNX1- haplodeficiency. Key points: Platelet content and endocytosis of α-granule proteins, albumin, fibrinogen and IgG, are decreased in germline RUNX1 haplodeficiency. In RUNX1 -deficient HEL cells and primary MK endocytosis is enhanced with defective trafficking leading to decreased protein levels.

12.
JCI Insight ; 8(22)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991024

RESUMEN

Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.


Asunto(s)
Ácidos Nucleicos Libres de Células , Trampas Extracelulares , Sepsis , Trombosis , Humanos , Ratones , Animales , Trampas Extracelulares/metabolismo , Factor Plaquetario 4/genética , Trombosis/metabolismo , Inflamación/metabolismo , Trombina/metabolismo , Factores Inmunológicos , Ácidos Nucleicos Libres de Células/metabolismo
13.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790328

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive and potentially a rapidly fatal disease characterized by vasoconstriction and remodeling of small pulmonary arteries (PA) leading to increased pulmonary vascular resistance and right heart failure. Central to the remodeling process is a switch of the smooth muscle cells in small PAs (PASMC) to a proliferative, apoptosis-resistant phenotype. There is reason to suspect that the plasminogen activator system may play an important role in the remodeling program in PAH based on its roles in vascular post-injury restenosis, fibrosis, angiogenesis and tumorigenesis. Plasminogen activator inhibitor-1 (PAI-1) is the primary physiological inhibitor of the plasminogen activators - urokinase-type and tissue-type (uPA and tPA, respectively). Immunohisto- chemical and immunoblot analyses revealed that PAI-1 was deficient in smooth muscle areas of small remodeled PAs and early-passage PASMC from subjects with PAH compared to non-PAH controls. PAI1-/- male and female mice developed spontaneous pulmonary vascular remodeling and pulmonary hypertension (PH) as evidenced by significant increase in PA medial thickness, systolic right ventricular pressure, and right ventricular hypertrophy. Lastly, the uPA inhibitors upamostat (WX-671) and amiloride analog BB2-30F down-regulated mTORC1 and SMAD3, restored PAI-1 levels, reduced proliferation, and induced apoptosis in human PAH PASMC. We examined the effect of inhibition of uPA catalytic activity by BB2-30F on the development of SU5416/Hypoxia (SuHx)-induced PH in mice. Vehicletreated SuHx-exposed mice had up-regulated mTORC1 in small PAs, developed pulmonary vascular remodeling and PH, as evidenced by significant increase of PA MT, sRVP, RV hypertrophy, and a significant decrease in the pulmonary artery acceleration time/pulmonary ejection time (PAAT/PET) ratio compared to age- and sex-matched normoxia controls, whereas BB2-30F-treated group was protected from all these pathological changes. Taken together, our data strongly suggest that PAI-1 down- regulation in PASMC from human PAH lungs promotes PASMC hyper-proliferation, remodeling, and spontaneous PH due to unopposed uPA activation. Further studies are needed to determine the potential benefits of targeting the PAI-1/uPA imbalance to attenuate the progression and/or reverse pulmonary vascular remodeling and PH.

14.
Blood Adv ; 7(15): 4112-4123, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37196641

RESUMEN

Heparin-induced thrombocytopenia (HIT) is characterized by thrombocytopenia associated with a highly prothrombotic state due to the development of pathogenic antibodies that recognize human platelet factor 4 (hPF4) complexed with various polyanions. Although nonheparin anticoagulants are the mainstay of care in HIT, subsequent bleeding may develop, and the risk of developing new thromboembolic events remain. We previously described a mouse immunoglobulin G2bκ (IgG2bκ) antibody KKO that mimics the sentinel features of pathogenic HIT antibodies, including binding to the same neoepitope on hPF4-polyanion complexes. KKO, like HIT IgGs, activates platelets through FcγRIIA and induces complement activation. We then questioned whether Fc-modified KKO could be used as a novel therapeutic to prevent or treat HIT. Using the endoglycosidase EndoS, we created deglycosylated KKO (DGKKO). Although DGKKO retained binding to PF4-polyanion complexes, it inhibited FcγRIIA-dependent activation of PF4-treated platelets triggered by unmodified KKO, 5B9 (another HIT-like monoclonal antibody), and IgGs isolated from patients with HIT. DGKKO also decreased complement activation and deposition of C3c on platelets. Unlike the anticoagulant fondaparinux, injection of DGKKO into HIT mice lacking mouse PF4, but transgenic for hPF4 and FcγRIIA, prevented and reversed thrombocytopenia when injected before or after unmodified KKO, 5B9, or HIT IgG. DGKKO also reversed antibody-induced thrombus growth in HIT mice. In contrast, DGKKO was ineffective in preventing thrombosis induced by IgG from patients with the HIT-related anti-PF4 prothrombotic disorder, vaccine-induced immune thrombotic thrombocytopenia. Thus, DGKKO may represent a new class of therapeutics for targeted treatment of patients with HIT.


Asunto(s)
Trombocitopenia , Trombosis , Ratones , Humanos , Animales , Heparina/efectos adversos , Trombocitopenia/inducido químicamente , Trombocitopenia/tratamiento farmacológico , Anticoagulantes/efectos adversos , Anticuerpos Monoclonales/efectos adversos , Trombosis/inducido químicamente , Inmunoglobulina G
16.
Cancer Res Commun ; 3(3): 420-430, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36923707

RESUMEN

Multiple myeloma is characterized by clonal proliferation of plasma cells that accumulate preferentially in the bone marrow (BM). The tumor microenvironment is one of the leading factors that promote tumor progression. Neutrophils and monocytes are a major part of the BM tumor microenvironment, but the mechanism of their contribution to multiple myeloma progression remains unclear. Here, we describe a novel mechanism by which S100A8/S100A9 proteins produced by BM neutrophils and monocytes promote the expansion of megakaryocytes supporting multiple myeloma progression. S100A8/S100A9 alone was not sufficient to drive megakaryopoiesis but markedly enhanced the effect of thrombopoietin, an effect that was mediated by Toll-like receptor 4 and activation of the STAT5 transcription factor. Targeting S100A9 with tasquinimod as a single agent and in combination with lenalidomide and with proteasome inhibitors has potent antimyeloma effect that is at least partly independent of the adaptive immune system. This newly identified axis of signaling involving myeloid cells and megakaryocytes may provide a new avenue for therapeutic targeting in multiple myeloma. Significance: We identified a novel mechanism by which myeloid cells promote myeloma progression independently of the adaptive immune system. Specifically, we discovered a novel role of S100A8/S100A9, the most abundant proteins produced by neutrophils and monocytes, in regulation of myeloma progression via promotion of the megakaryocyte expansion and angiogenesis. Tasquinimod, an inhibitor of S100A9, has potent antimyeloma effects as a single agent and in combination with lenalidomide and with proteasome inhibitors.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Megacariocitos/metabolismo , Lenalidomida , Inhibidores de Proteasoma , Calgranulina B/metabolismo , Calgranulina A/metabolismo , Microambiente Tumoral
17.
J Thromb Haemost ; 21(3): 652-666, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36696211

RESUMEN

BACKGROUND: Heparin-induced thrombocytopenia (HIT) is a serious thrombotic disorder caused by ultralarge immune complexes (ULICs) containing platelet factor 4 (PF4) and heparin that form the HIT antigen, together with a subset of anti-PF4 antibodies. ULICs initiate prothrombotic responses by engaging Fcγ receptors on platelets, neutrophils, and monocytes. Contemporary anti-thrombotic therapy for HIT is neither entirely safe nor entirely successful and acts downstream of ULIC formation and Fcγ receptor-initiated generation of thrombin. OBJECTIVES: To determine whether HIT antigen and ULIC formation and stability could be modified favorably by inhibiting PF4-heparin interactions with fondaparinux, together with blocking formation of PF4 tetramers using a humanized monoclonal anti-PF4 antibody (hRTO). METHODS: Results: The combination of fondaparinux and hRTO inhibited HIT antigen formation, promoted antigen dissociation, inhibited ULIC formation, and promoted ULIC disassembly at concentrations below the effective concentration of either alone and blocked Fcγ receptor-dependent induction of factor Xa activity by monocytic THP1 cells and activation of human platelets in whole blood. Combined with hRTO, fondaparinux inhibited HIT antigen and immune complex formation and activation through Fcγ receptors at concentrations at or below those used clinically to inhibit FXa coagulant activity. CONCLUSIONS: HIT antigen and immune complexes are dynamic and amenable to modulation. Fondaparinux can be converted from an anticoagulant that acts at a downstream amplification step into a rationale, disease-specific intervention that blocks ULIC formation. Interventions that prevent ULIC formation and stability might increase the efficacy, permit use of lower doses, shorten the duration of antithrombotic therapy, and help prevent this serious thrombotic disorder.


Asunto(s)
Trombocitopenia , Trombosis , Humanos , Anticuerpos Monoclonales Humanizados/efectos adversos , Anticoagulantes/efectos adversos , Complejo Antígeno-Anticuerpo , Fondaparinux/efectos adversos , Heparina/efectos adversos , Factor Plaquetario 4 , Receptores de IgG , Trombosis/etiología
18.
bioRxiv ; 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36711969

RESUMEN

Neutrophil extracellular traps (NETs) are abundant in sepsis, and proposed NET-directed therapies in sepsis prevent their formation or accelerate degradation. Yet NETs are important for microbial entrapment, as NET digestion liberates pathogens and NET degradation products (NDPs) that deleteriously promote thrombosis and endothelial cell injury. We proposed an alternative strategy of NET-stabilization with the chemokine, platelet factor 4 (PF4, CXCL4), which we have shown enhances NET-mediated microbial entrapment. We now show that NET compaction by PF4 reduces their thrombogenicity. In vitro, we quantified plasma thrombin and fibrin generation by intact or degraded NETs and cell-free (cf) DNA fragments, and found that digested NETs and short DNA fragments were more thrombogenic than intact NETs and high molecular weight genomic DNA, respectively. PF4 reduced the thrombogenicity of digested NETs and DNA by interfering, in part, with contact pathway activation. In endothelial cell culture studies, short DNA fragments promoted von Willebrand factor release and tissue factor expression via a toll-like receptor 9-dependent mechanism. PF4 blocked these effects. Cxcl4-/- mice infused with cfDNA exhibited higher plasma thrombin anti-thrombin (TAT) levels compared to wild-type controls. Following challenge with bacterial lipopolysaccharide, Cxcl4-/- mice had similar elevations in plasma TAT and cfDNA, effects prevented by PF4 infusion. Thus, NET-stabilization by PF4 prevents the release of short fragments of cfDNA, limiting the activation of the contact coagulation pathway and reducing endothelial injury. These results support our hypothesis that NET-stabilization reduces pathologic sequelae in sepsis, an observation of potential clinical benefit.

19.
Blood ; 141(3): 260-270, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36219879

RESUMEN

Heterozygous defects in runt-related transcription factor 1 (RUNX1) are causative of a familial platelet disorder with associated myeloid malignancy (FPDMM). Because RUNX1-deficient animal models do not mimic bleeding disorder or leukemic risk associated with FPDMM, development of a proper model system is critical to understanding the underlying mechanisms of the observed phenotype and to identifying therapeutic interventions. We previously reported an in vitro megakaryopoiesis system comprising human CD34+ hematopoietic stem and progenitor cells that recapitulated the FPDMM quantitative megakaryocyte defect through a decrease in RUNX1 expression via a lentiviral short hairpin RNA strategy. We now show that shRX-megakaryocytes have a marked reduction in agonist responsiveness. We then infused shRX-megakaryocytes into immunocompromised NOD scid gamma (NSG) mice and demonstrated that these megakaryocytes released fewer platelets than megakaryocytes transfected with a nontargeting shRNA, and these platelets had a diminished half-life. The platelets were also poorly responsive to agonists, unable to correct thrombus formation in NSG mice homozygous for a R1326H mutation in von Willebrand Factor (VWFR1326H), which switches the species-binding specificity of the VWF from mouse to human glycoprotein Ibα. A small-molecule inhibitor RepSox, which blocks the transforming growth factor ß1 (TGFß1) pathway and rescued defective megakaryopoiesis in vitro, corrected the thrombopoietic defect, defects in thrombus formation and platelet half-life, and agonist response in NSG/VWFR1326H mice. Thus, this model recapitulates the defects in FPDMM megakaryocytes and platelets, identifies previously unrecognized defects in thrombopoiesis and platelet half-life, and demonstrates for the first time, reversal of RUNX1 deficiency-induced hemostatic defects by a drug.


Asunto(s)
Megacariocitos , Trombopoyesis , Humanos , Ratones , Animales , Megacariocitos/metabolismo , Trombopoyesis/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Semivida , Plaquetas/metabolismo
20.
Sci Rep ; 12(1): 18636, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329090

RESUMEN

Periodontitis is a chronic inflammatory disease characterized by the release of matrix metalloproteinases (MMPs) from resident connective tissue cells in tooth-supporting tissues (periodontium). Platelet activation, and the attendant release of pro-inflammatory chemokines such as platelet factor 4 (CXCL4/PF4), are associated with periodontitis although the associated biochemical pathways remain undefined. Here we report that recombinant PF4 is internalized by cultured human gingival fibroblasts (hGFs), resulting in significant (p < 0.05) upregulation in both the production and release of MMP-2 (gelatinase A). This finding was corroborated by elevated circulating levels of MMP-2 (p < 0.05) in PF4-overexpressing transgenic mice, relative to controls. We also determined that PF4 induces the phosphorylation of NF-κB; notably, the suppression of NF-κB signaling by the inhibitor BAY 11-7082 abrogated PF4-induced MMP-2 upregulation. Moreover, the inhibition of surface glycosaminoglycans (GAGs) blocked both PF4 binding and NF-κB phosphorylation. Partial blockade of PF4 binding to the cells was achieved by treatment with either chondroitinase ABC or heparinase III, suggesting that both chondroitin sulfate and heparan sulfate mediate PF4 signaling. These results identify a novel pathway in which PF4 upregulates MMP-2 release from fibroblasts in an NF-κB- and GAG-dependent manner, and further our comprehension of the role of platelet signaling in periodontal tissue homeostasis.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Periodontitis , Ratones , Animales , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Factor Plaquetario 4/metabolismo , FN-kappa B/metabolismo , Encía , Fibroblastos/metabolismo , Periodontitis/metabolismo , Inhibidores de la Angiogénesis/metabolismo , Metaloproteinasa 3 de la Matriz/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA