Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Seizure ; 82: 80-90, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33011591

RESUMEN

Hypothermia is a widely used clinical practice for neuroprotection and is a well-established method to mitigate the adverse effects of some clinical conditions such as reperfusion injury after cardiac arrest and hypoxic ischemic encephalopathy in newborns. The discovery, that lowering the core temperature has a therapeutic potential dates back to the early 20th century, but the underlying mechanisms are actively researched, even today. Especially, in the area of neural disorders such as epilepsy and traumatic brain injury, cooling has promising prospects. It is well documented in animal models, that the application of focal brain cooling can effectively terminate epileptic discharges. There is, however, limited data regarding human clinical trials. In this review article, we will discuss the main aspects of therapeutic hypothermia focusing on its use in treating epilepsy. The various experimental approaches and device concepts for focal brain cooling are presented and their potential for controlling and suppressing seizure activity are compared.


Asunto(s)
Encéfalo , Epilepsia , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Animales , Anticonvulsivantes , Encéfalo/fisiología , Epilepsia/terapia , Humanos , Hipoxia-Isquemia Encefálica/terapia , Recién Nacido , Neuroprotección
2.
Mater Sci Eng C Mater Biol Appl ; 112: 110870, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32409039

RESUMEN

The use of SU-8 material in the production of neural sensors has grown recently. Despite its widespread application, a detailed systematic quantitative analysis concerning its biocompatibility in the central nervous system is lacking. In this immunohistochemical study, we quantified the neuronal preservation and the severity of astrogliosis around SU-8 devices implanted in the neocortex of rats, after a 2 months survival. We found that the density of neurons significantly decreased up to a distance of 20 µm from the implant, with an averaged density decrease to 24 ±â€¯28% of the control. At 20 to 40 µm distance from the implant, the majority of the neurons was preserved (74 ±â€¯39% of the control) and starting from 40 µm distance from the implant, the neuron density was control-like. The density of synaptic contacts - examined at the electron microscopic level - decreased in the close vicinity of the implant, but it recovered to the control level as close as 24 µm from the implant track. The intensity of the astroglial staining significantly increased compared to the control region, up to 560 µm and 480 µm distance from the track in the superficial and deep layers of the neocortex, respectively. Electron microscopic examination revealed that the thickness of the glial scar was around 5-10 µm thin, and the ratio of glial processes in the neuropil was not more than 16% up to a distance of 12 µm from the implant. Our data suggest that neuronal survival is affected only in a very small area around the implant. The glial scar surrounding the implant is thin, and the presence of glial elements is low in the neuropil, although the signs of astrogliosis could be observed up to about 500 µm from the track. Subsequently, the biocompatibility of the SU-8 material is high. Due to its low cost fabrication and more flexible nature, SU-8 based devices may offer a promising approach to experimental and clinical applications in the future.


Asunto(s)
Materiales Biocompatibles/farmacología , Compuestos Epoxi/química , Neuronas/efectos de los fármacos , Polímeros/química , Animales , Materiales Biocompatibles/química , Encéfalo/patología , Compuestos Epoxi/farmacología , Femenino , Masculino , Microscopía Electrónica de Rastreo , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/ultraestructura , Neuronas/citología , Neuronas/metabolismo , Neuronas/patología , Polímeros/farmacología , Prótesis e Implantes , Ratas , Ratas Wistar
3.
J Biomed Mater Res A ; 107(10): 2350-2359, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31161618

RESUMEN

The long-term application of central nervous system implants is currently limited by the negative response of the brain tissue, affecting both the performance of the device and the survival of nearby cells. Topographical modification of implant surfaces mimicking the structure and dimensions of the extracellular matrix may provide a solution to this negative tissue response and has been shown to affect the attachment and behavior of both neurons and astrocytes. In our study, commonly used neural implant materials, silicon, and platinum were tested with or without nanoscale surface modifications. No biological coatings were used in order to only examine the effect of the nanostructuring. We seeded primary mouse astrocytes and hippocampal neurons onto four different surfaces: flat polysilicon, nanostructured polysilicon, and platinum-coated versions of these surfaces. Fluorescent wide-field, confocal, and scanning electron microscopy were used to characterize the attachment, spreading and proliferation of these cell types. In case of astrocytes, we found that both cell number and average cell spreading was significantly larger on platinum, compared to silicon surfaces, while silicon surfaces impeded glial proliferation. Nanostructuring did not have a significant effect on either parameter in astrocytes but influenced the orientation of actin filaments and glial fibrillary acidic protein fibers. Neuronal soma attachment was impaired on metal surfaces while nanostructuring seemed to influence neuronal growth cone morphology, regardless of surface material. Taken together, the type of metals tested had a profound influence on cellular responses, which was only slightly modified by nanopatterning.


Asunto(s)
Astrocitos/citología , Nanoestructuras/química , Neuronas/citología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/ultraestructura , Adhesión Celular/efectos de los fármacos , Recuento de Células , Movimiento Celular/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Células Cultivadas , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/metabolismo , Hipocampo/citología , Ratones , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Platino (Metal)/farmacología , Silicio/farmacología , Propiedades de Superficie
4.
Sci Rep ; 6: 35944, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27775024

RESUMEN

Neural interface technologies including recording and stimulation electrodes are currently in the early phase of clinical trials aiming to help patients with spinal cord injuries, degenerative disorders, strokes interrupting descending motor pathways, or limb amputations. Their lifetime is of key importance; however, it is limited by the foreign body response of the tissue causing the loss of neurons and a reactive astrogliosis around the implant surface. Improving the biocompatibility of implant surfaces, especially promoting neuronal attachment and regeneration is therefore essential. In our work, bioactive properties of implanted black polySi nanostructured surfaces (520-800 nm long nanopillars with a diameter of 150-200 nm) were investigated and compared to microstructured Si surfaces in eight-week-long in vivo experiments. Glial encapsulation and local neuronal cell loss were characterised using GFAP and NeuN immunostaining respectively, followed by systematic image analysis. Regarding the severity of gliosis, no significant difference was observed in the vicinity of the different implant surfaces, however, the number of surviving neurons close to the nanostructured surface was higher than that of the microstructured ones. Our results imply that the functionality of implanted microelectrodes covered by Si nanopillars may lead to improved long-term recordings.


Asunto(s)
Sistema Nervioso Central/cirugía , Reacción a Cuerpo Extraño/patología , Nanoestructuras/efectos adversos , Prótesis e Implantes/efectos adversos , Implantación de Prótesis/efectos adversos , Silicio/efectos adversos , Animales , Muerte Celular , Proliferación Celular , Gliosis/patología , Neuroglía/fisiología , Neuronas/patología , Imagen Óptica , Ratas Wistar
5.
PLoS One ; 10(12): e0145307, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26683306

RESUMEN

Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.


Asunto(s)
Electrocorticografía/instrumentación , Electrodos Implantados , Microelectrodos , Platino (Metal) , Potenciales de Acción , Animales , Ratas Wistar
6.
J Mater Sci Mater Med ; 25(3): 931-40, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24318022

RESUMEN

The durability of high surface area platinum electrodes during acute intracerebral measurements was investigated. Electrode sites with extremely rough surfaces were realized using electrochemical deposition of platinum onto silicon-based microelectrode arrays from a lead-free platinizing solution. The close to 1000-fold increase in effective surface area lowered impedance, its absolute value at 1 kHz became about 7 and 18 % of the original Pt electrodes in vitro and in vivo, respectively. 24-channel probes were subjected to 12 recording sessions, during which they were implanted into the cerebrum of rats. Our results showed that although on the average the effective surface area of the platinized sites decreased, it remained more than two orders of magnitude higher than the average effective surface area of the original, sputtered thin-film platinum electrodes. Sites with electrochemical deposits proved to be superior, e.g. they provided less thermal and 50 Hz noise, even after 12 penetrations into the intact rat brain.


Asunto(s)
Potenciales de Acción/fisiología , Encéfalo/fisiología , Electroencefalografía/instrumentación , Análisis por Micromatrices/instrumentación , Microelectrodos , Neuronas/fisiología , Platino (Metal)/química , Adsorción , Animales , Materiales Biocompatibles Revestidos/química , Impedancia Eléctrica , Galvanoplastia , Diseño de Equipo , Análisis de Falla de Equipo , Dureza , Ratas , Ratas Wistar , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Estrés Mecánico , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA