RESUMEN
Opisthorchiosis is a parasitic liver disease found in mammals that is widespread throughout the world and causes systemic inflammation. Praziquantel remains the drug of choice for the treatment of opisthorchiosis, despite its many adverse effects. An anthelmintic effect is attributed to the main curcuminoid of Curcuma longa L. roots-curcumin (Cur)-along with many other therapeutic properties. To overcome the poor solubility of curcumin in water, a micellar complex of curcumin with the disodium salt of glycyrrhizic acid (Cur:Na2GA, molar ratio 1:1) was prepared via solid-phase mechanical processing. In vitro experiments revealed a noticeable immobilizing effect of curcumin and of Cur:Na2GA on mature and juvenile Opisthorchis felineus individuals. In vivo experiments showed that curcumin (50 mg/kg) had an anthelmintic effect after 30 days of administration to O. felineus-infected hamsters, but the effect was weaker than that of a single administration of praziquantel (400 mg/kg). Cur:Na2GA (50 mg/kg, 30 days), which contains less free curcumin, did not exert this action. The complex, just as free curcumin or better, activated the expression of bile acid synthesis genes (Cyp7A1, Fxr, and Rxra), which was suppressed by O. felineus infection and by praziquantel. Curcumin reduced the rate of inflammatory infiltration, whereas Cur:Na2GA reduced periductal fibrosis. Immunohistochemically, a decrease in liver inflammation markers was found, which is determined by calculating the numbers of tumor-necrosis-factor-positive cells during the curcumin treatment and of kynurenine-3-monooxygenase-positive cells during the Cur:Na2GA treatment. A biochemical blood test revealed a normalizing effect of Cur:Na2GA (comparable to that of curcumin) on lipid metabolism. We believe that the further development and investigation of therapeutics based on curcuminoids in relation Opisthorchis felineus and other trematode infections will be useful for clinical practice and veterinary medicine.
RESUMEN
Currently, molecular parasitologists are searching for new agents against trematodiases. Redox metabolism is important for parasites as far as long-lived adult parasites inside a mammalian host are exposed to redox challenges. Antioxidants have been poorly studied as anthelmintic agents, in particular against the foodborne trematodes. Study of in vitro anthelmintic activity of nonenzymatic natural and synthetic antioxidants of various chemical structures was performed using standard motility and mortality assays against juvenile and adult Opisthorchis felineus worms. Promising agents have been found among both natural and synthetic compounds. The mitochondria-targeted antioxidant SkQ1 [10-(6'-plastoquinonyl)decyltriphenylphosphonium] in motility assays was as effective (half-maximal inhibitory concentration [IC50] 0.6-1.4 µM) as praziquantel (IC50 0.47-1.4 µM), and SkQ1 was significantly more effective than praziquantel in mortality assays. Moreover, extensive tegument damage of the adult fluke was revealed after SkQ1 treatment. Flavonoids manifested potency too, with IC50 values in a micromolar range (5.1-17.4 µM). Other natural and synthetic compounds tested against helminths were significantly less effective than praziquantel. Results of our study indicate that SkQ1 and flavonoids have high anthelmintic activities against the liver flukes. We propose that structure-activity relationship research might be worthwhile based on the structures of the most effective substances.