Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Polymers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38794552

RESUMEN

Nanotechnology is one of the newest directions for plant-based therapies. Chronic venous disease often predisposes to long-term and invasive treatment. This research focused on the inclusion of vegetal extracts from Sophorae flos (SE), Calendulae flos (CE), and Ginkgo bilobae folium (GE) in formulations with PHB and PLGA polymers and their physicochemical characterization as a preliminary stage for possible use in the development of a complex therapeutic product. The samples were prepared by an oil-water emulsification and solvent evaporation technique, resulting in suspensions with high spreadability and a pH of 5.5. ATR-FTIR analysis revealed bands for stretching vibrations (O-H, C=O, and C-H in symmetric and asymmetric methyl and methylene) in the same regions as the base components, but switched to high or low wavenumbers and absorbance, highlighting the formation of adducts/complexes between the extracts and polymers. The obtained formulations were in the amorphous phase, as confirmed by XRD analysis. AFM analysis emphasized the morphological peculiarities of the extract-polymer nanoformulations. It could be noticed that, in the case of SE-based formulations, the dominant characteristics for SE-PHB and SE-PLGA composition were the formation of random large (SE-PHB) and smaller uniform (SE-PLGA) particles; further on, these particles tended to aggregate in the case of SE-PHB-PLGA. For the CE- and GE-based formulations, the dominant surface morphology was their porosity, generally with small pores, but larger cavities were observed in some cases (CE- and GE-PHB). The highest roughness values at the (8 µm × 8 µm) scale were found for the following samples and succession: CE-PHB < SE-PLGA < SE-PHB-PLGA. In addition, by thermogravimetric analysis, impregnation in the matrix of compression stockings was evaluated, which varied in the following order: CE-polymer > SE-polymer > GE-polymer. In conclusion, nine vegetal extract-polymer nanoformulations were prepared and preliminarily characterized (by advanced physicochemical methods) as a starting point for further optimization, stability studies, and possible use in complex pharmaceutical products.

2.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731544

RESUMEN

Berberis vulgaris (L.) has remarkable ethnopharmacological properties and is widely used in traditional medicine. The present study investigated B. vulgaris stem bark (Berberidis cortex) by extraction with 50% ethanol. The main secondary metabolites were quantified, resulting in a polyphenols content of 17.6780 ± 3.9320 mg Eq tannic acid/100 g extract, phenolic acids amount of 3.3886 ± 0.3481 mg Eq chlorogenic acid/100 g extract and 78.95 µg/g berberine. The dried hydro-ethanolic extract (BVE) was thoroughly analyzed using Ultra-High-Performance Liquid Chromatography coupled with High-Resolution Mass Spectrometry (UHPLC-HRMS/MS) and HPLC, and 40 bioactive phenolic constituents were identified. Then, the antioxidant potential of BVE was evaluated using three methods. Our results could explain the protective effects of Berberidis cortex EC50FRAP = 0.1398 mg/mL, IC50ABTS = 0.0442 mg/mL, IC50DPPH = 0.2610 mg/mL compared to ascorbic acid (IC50 = 0.0165 mg/mL). Next, the acute toxicity and teratogenicity of BVE and berberine-berberine sulfate hydrate (BS)-investigated on Daphnia sp. revealed significant BS toxicity after 24 h, while BVE revealed considerable toxicity after 48 h and induced embryonic developmental delays. Finally, the anticancer effects of BVE and BS were evaluated in different tumor cell lines after 24 and 48 h of treatments. The MTS assay evidenced dose- and time-dependent antiproliferative activity, which was higher for BS than BVE. The strongest diminution of tumor cell viability was recorded in the breast (MDA-MB-231), colon (LoVo) cancer, and OSCC (PE/CA-PJ49) cell lines after 48 h of exposure (IC50 < 100 µg/mL). However, no cytotoxicity was reported in the normal epithelial cells (HUVEC) and hepatocellular carcinoma (HT-29) cell lines. Extensive data analysis supports our results, showing a significant correlation between the BVE concentration, phenolic compounds content, antioxidant activity, exposure time, and the viability rate of various normal cells and cancer cell lines.


Asunto(s)
Antioxidantes , Berberis , Corteza de la Planta , Extractos Vegetales , Berberis/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Corteza de la Planta/química , Humanos , Línea Celular Tumoral , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Supervivencia Celular/efectos de los fármacos , Fenoles/farmacología , Fenoles/química , Cromatografía Líquida de Alta Presión , Tallos de la Planta/química
3.
Plants (Basel) ; 13(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38732407

RESUMEN

The present study focuses on the chemical characterization of a dry extract obtained from the species Ajuga chamaepitys (L.) Schreb, evaluating its antioxidant properties, toxicity, and in silico profile. Quantitative analysis of the dry extract revealed a notable amount of phytochemical compounds: 59.932 ± 21.167 mg rutin equivalents (mg REs)/g dry weight, 45.864 ± 4.434 mg chlorogenic acid equivalents (mg ChAEs)/g dry weight and, respectively, 83.307 ± 3.989 mg tannic acid equivalents (TAEs)/g dry weight. By UHPLC-HRMS/MS, the following were quantified as major compounds: caffeic acid (3253.8 µg/g extract) and kaempherol (3041.5 µg/g extract); more than 11 types of polyphenolic compounds were quantified (genistin 730.2 µg/g extract, naringenin 395 µg/g extract, apigenin 325.7 µg/g extract, galangin 283.3 µg/g extract, ferulic acid 254.3 µg/g extract, p-coumaric acid 198.2 µg/g extract, rutin 110.6 µg/g extract, chrysin 90.22 µg/g extract, syringic acid 84.2 µg/g extract, pinocembrin 32.7 µg/g extract, ellagic acid 18.2 µg/g extract). The antioxidant activity was in accordance with the amount of phytochemical compounds: IC50DPPH = 483.6 ± 41.4 µg/mL, IC50ABTS•+ = 127.4 ± 20.2 µg/mL, and EC50FRAP = 491.6 ± 2 µg/mL. On the larvae of Artemia sp., it was found that the extract has a low cytotoxic action. In silico studies have highlighted the possibility of inhibiting the activity of protein kinases CDK5 and GSK-3b for apigenin, galangin, and kaempferol, with possible utility for treating neurodegenerative pathologies and neuropathic pain. Further studies are warranted to confirm the predicted molecular mechanisms of action and to further investigate the therapeutic potential in animal models of neurological disorders.

4.
Pharmaceutics ; 16(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399299

RESUMEN

Capsicum annuum (L.) is one of the essential spices most frequently used in our daily routine and has remarkable ethnobotanical and pharmacological properties. Its fruits are rich in vitamins, minerals, carotenoids, and numerous other phenolic metabolites with a well-known antioxidant activity. Regular consumption of chili fruits may have a positive influence on human health. Therefore, we investigated a commercially available chili fruit powder in the present study, extracting it with 50% ethanol. The dried hydro-ethanolic extract (CAE) was thoroughly analyzed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS/MS), and 79 bioactive phenolic constituents were identified. Then, we quantified the main phenolic compounds and found a polyphenol content of 4.725 ± 1.361 mg Eq tannic acid/100 g extract and a flavonoid amount of 1.154 ± 0.044 mg Eq rutin/100 g extract. Phenolic secondary metabolites are known for their dual redox behavior as antioxidants/pro-oxidants, underlying their numerous benefits in health and disease. Thus, the antioxidant potential of CAE was evaluated using three methods; our results could explain the protective effects of chili fruits: IC50DPPH = 1.669 mg/mL, IC50ABTS = 0.200 mg/mL, and EC50FRAP = 0.561 mg/mL. The pro-oxidant potential of phenolic compounds could be a basis for CAE cytotoxicity, investigated in vitro on tumor cell lines and in vivo on Daphnia sp. Results demonstrated the dose- and time-dependent CAE's cytotoxic activity; the highest antiproliferative activity was recorded on colon (LoVo) and breast (MDA-MB-231) cancer cell lines after 48 h of exposure (IC50 values < 200 µg/mL). In vivo testing on Daphnia sp. reported a potent CAE cytotoxicity after 48 h and embryonic developmental delays. Extensive data analyses support our results, showing a significant correlation between the CAE's concentration, phenolic compound content, antioxidant activity, exposure time, and the viability rate of different tested cell lines.

5.
Foods ; 12(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37959025

RESUMEN

The problem of food with functional ingredients, characterized by low energy intake and a variety of phytonutrients with biological activity, is one of the concerns of the population. The objectives of this study were to investigate the effect of pumpkin powder and its bioactive components on the quality, color and textural properties of shortbread cookies. In the drying process of pumpkin powder (Cucurbita moschata) at 60 ± 2 °C, the physicochemical parameters did not change significantly in relation to fresh pulp. The chromatic parameters L*, a* and b* showed that the pumpkin powder was brighter than the pulp, with a greater presence of yellow pigments. Pumpkin powder presented a rich source of bioactive compounds (polyphenols flavonoids, carotenoids) with an antioxidant potential of 161.52 mmol TE/100 g DW and 558.71 mg GAE/100 g DW. Antimicrobial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus), Gram-negative (Escherichia coli, Salmonella Abony and Pseudomonas aeruginosa) bacteria and high antifungal activity against Candida albicans were attested. The sensory, physicochemical, texture parameters and color indicators of shortbread cookies with yellow pumpkin powder (YPP) added in a proportion of 5-20% were analyzed. The optimal score was given to the sample of 15% YPP. The use of 15-20% YPP contributed to improved consistency due to the formation of complexes between starch and protein.

6.
Pharmaceutics ; 15(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37631338

RESUMEN

Endothelial dysfunction is the basis of the physiopathological mechanisms of vascular diseases. In addition to the therapeutic activity of plant extracts, cytotoxicity is significant. This research evaluates the cytotoxicity of three vegetal extracts (Calendulae flos extract-CE, Ginkgo bilobae folium extract-GE, and Sophorae flos extract-SE). In vitro evaluation was performed using an endothelial cell line model (Human Pulmonary Artery Endothelial Cells-HPAEC) when a dose-dependent cytotoxic activity was observed after 72 h. The IC50 values were calculated for all extracts: Calendulae flos extract (IC50 = 91.36 µg/mL), Sophorae flos extract (IC50 = 68.61 µg/mL), and Ginkgo bilobae folium extract (IC50 = 13.08 µg/mL). Therefore, at the level of HPAEC cells, the cytotoxicity of the extracts follows the order GE > SE > CE. The apoptotic mechanism implied in cell death was predicted for several phytocompounds using the PASS algorithm and molecular docking simulations, highlighting potential interactions with caspases-3 and -8. In vivo analysis was performed through brine shrimp lethality assay (BSLA) when lethal, behavioral, and cytological effects were evaluated on Artemia salina larvae. The viability examined after 24 h (assessment of lethal effects) follows the same sequence: CE > SE > GE. In addition, the predicted cell permeability was observed mainly for GE constituents through in silico studies. However, the extracts can be considered nontoxic according to Clarckson's criteria because no BSL% was registered at 1200 µg/mL. The obtained data reveal that all three extracts are safe for human use and suitable for incorporation in further pharmaceutical formulations.

7.
Int J Mol Sci ; 24(14)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37511428

RESUMEN

Oxidative stress is the most critical factor in multiple functional disorders' development, and natural antioxidants could protect the human body against it. Our study aims to investigate the polyphenol content of four extracts of two medicinal plants (Rosmarinus officinalis L. and Thymus vulgaris L.) and analyze the correlation with their antioxidant activity. The research was carried out on extracts of rosemary and thyme obtained from species cultivated together in plant communities. Both were compared with extracts from species cultivated in individual crops (control crops). Their polyphenols were determined by spectrophotometric methods (dosage of flavones, phenol carboxylic acids, and total polyphenols) and chromatography (UHPLC-MS and FT-ICR MS). Triterpenic acids were also quantified, having a higher concentration in the thyme extract from the culture. The antioxidant activity of the dry extracts was evaluated in vitro (DPPH, ABTS, and FRAP) and in silico (prediction of interactions with BACH1/BACH2 transcription factors). The concentrations of polyphenols are higher in the extracts obtained from the sources collected from the common crops. These observations were also validated following the chromatographic analysis for some compounds. Statistically significant differences in the increase in the antioxidant effect were observed for the extracts from the common batches compared to those from the individual ones. Following the Pearson analysis, the IC50 values for each plant extract were strongly correlated with the concentration of active phytoconstituents. Molecular docking studies revealed that quercetin could bind to BTB domains of BACH1 and BACH2 transcription factors, likely translating into increased antioxidant enzyme expression. Future studies must validate the in silico findings and further investigate phytosociological cultivation's effects.


Asunto(s)
Lamiaceae , Rosmarinus , Thymus (Planta) , Humanos , Antioxidantes/química , Thymus (Planta)/química , Rosmarinus/química , Lamiaceae/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Polifenoles/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico
8.
Molecules ; 28(8)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37110539

RESUMEN

The antimicrobial and antioxidant effects of plant extracts are well known, but their use is limited because they affect the physicochemical and sensory characteristics of products. Encapsulation presents an option to limit or prevent these changes. The paper presents the composition of individual polyphenols (HPLC-DAD-ESI-MS) from basil (Ocimum basilicum L.) extracts (BE), and their antioxidant activity and inhibitory effects against strains of Staphylococcus aureus, Geobacillus stearothermophilus, Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, and Salmonella Abony. The BE was encapsulated in sodium alginate (Alg) using the drop technique. The encapsulation efficiency of microencapsulated basil extract (MBE) was 78.59 ± 0.01%. SEM and FTIR analyses demonstrated the morphological aspect of the microcapsules and the existence of weak physical interactions between the components. Sensory, physicochemical and textural properties of MBE-fortified cream cheese were evaluated over a 28-day storage time at 4 °C. In the optimal concentration range of 0.6-0.9% (w/w) MBE, we determined the inhibition of the post-fermentation process and the improvement in the degree of water retention. This led to the improvement of the textural parameters of the cream cheese, contributing to the extension of the shelf life of the product by 7 days.


Asunto(s)
Antiinfecciosos , Queso , Ocimum basilicum , Queso/análisis , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ocimum basilicum/química , Antioxidantes/farmacología , Antioxidantes/química
9.
Antioxidants (Basel) ; 12(4)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37107268

RESUMEN

The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants-Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on-yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC-DAD-ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30-0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.

10.
Foods ; 11(22)2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36429157

RESUMEN

This study focused on the development of a yogurt with an improved structure, texture and antioxidant activity level, by using apple pomace (AP) powder that was obtained in large quantities during the production of juices. The objective was to determine the sensory, physicochemical, textural and antioxidant characteristics of yogurt with the addition of AP powder (0.2-1.0%), during its shelf life. The physicochemical composition of AP was determined as follows: dietary fibers-62.73%, including pectin-23.12%; and the content of the antioxidant compounds in AP-total polyphenols (728.8 mg GAE/100 g DW), flavonoids (246.5 mg QE/100 g DW), tannins (63.54 mg TAE/100 g DW), carotenoids (4.93 mg/100 g DW) and the ability to inhibit the free radical (2433 µmol TE/100 g DW). AP addition reduces the yogurt fermentation time. The increase in the total dietary fiber content of up to 0.63% and in the insoluble fiber of up to 0.14% was attested in this study, as well as a significant increase in antioxidant activity, which correlated to the AP content. The addition of AP improved the textural properties of the yogurt during storage (20 days) and led to a significant reduction in syneresis. The influence of the AP content and the storage period on the textural characteristics and the overall acceptability of the yogurt samples were analyzed by the mutual information method. The AP content greatly influenced the yogurt's quality, with the information analysis value for the overall acceptability being 0.965 bits. The analysis of the sensory and textural parameters of the yogurt during storage (1-20 days) demonstrated that samples with AP in proportions of 0.6-0.8% were evaluated with the highest score.

11.
Foods ; 11(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35627035

RESUMEN

The saponification value of fats and oils is one of the most common quality indices, reflecting the mean molecular weight of the constituting triacylglycerols. Proton nuclear magnetic resonance (1H-NMR) spectra of fats and oils display specific resonances for the protons from the structural patterns of the triacylglycerols (i.e., the glycerol backbone), methylene (-CH2-) groups, double bonds (-CH=CH-) and the terminal methyl (-CH3) group from the three fatty acyl chains. Consequently, chemometric equations based on the integral values of the 1H-NMR resonances allow for the calculation of the mean molecular weight of triacylglycerol species, leading to the determination of the number of moles of triacylglycerol species per 1 g of fat and eventually to the calculation of the saponification value (SV), expressed as mg KOH/g of fat. The algorithm was verified on a series of binary mixtures of tributyrin (TB) and vegetable oils (i.e., soybean and rapeseed oils) in various ratios, ensuring a wide range of SV. Compared to the conventional technique for SV determination (ISO 3657:2013) based on titration, the obtained 1H-NMR-based saponification values differed by a mean percent deviation of 3%, suggesting the new method is a convenient and rapid alternate approach. Moreover, compared to other reported methods of determining the SV from spectroscopic data, this method is not based on regression equations and, consequently, does not require calibration from a database, as the SV is computed directly and independently from the 1H-NMR spectrum of a given oil/fat sample.

12.
Foods ; 11(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35627098

RESUMEN

The aim of this study was to investigate the effects of the dry-aging method on the sensory properties, chemical composition, and profile parameters of the texture of beef obtained from local farms. The qualitative characteristics of the beef were investigated for five samples, respectively, fresh meat, and dry-aged beef for 14, 21, 28, and 35 days, in aging rooms with controlled parameters: temperature (1 ± 1 °C), relative humidity (80 ± 5%), and air circulation speed (0.5-2 m/s). During the dry-aging period, there was a decrease in humidity by about 6.5% in the first 21 days, which allowed the concentration of fat, protein, and total collagen content. The dry-aging process considerably influenced the pH value of the meat, which, in the second part of the dry-aging process (14-35 days), increased from 5.49 to 5.66. These values favored the increase by 37.33% of the water retention capacity and the activation of the meat's own enzymes (calpain, cathepsin, collagenase). This influenced the solubilization process of proteins and collagen, thus contributing to the improvement of the texture profile. Because variations in organoleptic and physicochemical parameters occurred simultaneously during dry-aging and storage, the method of analyzing the information was applied. Mutual information on the influence of physicochemical indicators on the texture profile parameters was followed, a factor of major importance in the consumer's perception. The degree of influence of soluble proteins, sarcoplasmic and myofibrillar proteins, fats, and soluble collagen content on the texture profile parameters (hardness, cohesiveness, springiness, gumminess, and chewiness) of the dry-aged beef for 35 days was established. These investigations allowed the optimization of the beef dry-aging technological process in order to obtain a product with a sensory profile preferred by the consumer.

13.
J Food Sci Technol ; 57(2): 628-637, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32116372

RESUMEN

The aim of this study was to evaluate the physico-chemical, microbiological, sensory properties and antioxidant activity of the functional cream cheese prepared with lipophilic extracts of sea buckthorn (Hippophae rhamnoides L.). The first step of the research consisted of an evaluation of the physico-chemical characteristics and the antioxidant capacity of the sea buckthorn lipophilic extracts. The sea buckthorn extracts had a significant antioxidant capacity (67.04 ± 2.67%), a content of total carotenoids of 8.27 ± 0.01 mg L-1 and a content of total polyphenols of 1842.86 ± 1.41 mg/100 g dry vegetal material. The addition of the sea buckthorn extracts did not negatively affect the fresh cream cheese's sensory characteristics. The addition of sea buckthorn extracts to the cream cheese resulted in an increase of antiradical activity and dry matter content, a decrease in acidity and higher growth inhibitition of germs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA