Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chem Sci ; 15(17): 6478-6487, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38699261

RESUMEN

Nucleoside triphosphates (NTPs) are essential in various biological processes. Cellular or even organismal controlled delivery of NTPs would be highly desirable, yet in cellulo and in vivo applications are hampered owing to their negative charge leading to cell impermeability. NTP transporters or NTP prodrugs have been developed, but a spatial and temporal control of the release of the investigated molecules remains challenging with these strategies. Herein, we describe a general approach to enable intracellular delivery of NTPs using covalently bound dendritic polycations, which are derived from PAMAM dendrons and their guanidinium derivatives. By design, these modifications are fully removable through attachment on a photocage, ready to deliver the native NTP upon irradiation enabling spatiotemporal control over nucleotide release. We study the intracellular distribution of the compounds depending on the linker and dendron generation as well as side chain modifications. Importantly, as the polycation is bound covalently, these molecules can also penetrate deeply into the tissue of living organisms, such as zebrafish.

2.
Molecules ; 25(22)2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-33203096

RESUMEN

Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.


Asunto(s)
Cumarinas/química , Luz , Nucleótidos/química , Fenómenos Físicos , Adenosina Trifosfato/química , Fluorescencia , Fotólisis
3.
Angew Chem Int Ed Engl ; 59(49): 21880-21884, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32762146

RESUMEN

We introduce color-shifting fluorophores that reversibly switch between a green and red fluorescent form through intramolecular spirocyclization. The equilibrium of the spirocyclization is environmentally sensitive and can be directly measured by determining the ratio of red to green fluorescence, thereby enabling the generation of ratiometric fluorescent probes and biosensors. Specifically, we developed a ratiometric biosensor for imaging calcium ions (Ca2+ ) in living cells, ratiometric probes for different proteins, and a bioassay for the quantification of nicotinamide adenine dinucleotide phosphate.


Asunto(s)
Técnicas Biosensibles , Calcio/análisis , Color , Colorantes Fluorescentes/química , Compuestos de Espiro/química , Línea Celular Tumoral , Humanos , Iones/análisis , Estructura Molecular
4.
Angew Chem Int Ed Engl ; 59(2): 804-810, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31638314

RESUMEN

Recent developments in fluorescence microscopy call for novel small-molecule-based labels with multiple functionalities to satisfy different experimental requirements. A current limitation in the advancement of live-cell single-molecule localization microscopy is the high excitation power required to induce blinking. This is in marked contrast to the minimal phototoxicity required in live-cell experiments. At the same time, quality of super-resolution imaging depends on high label specificity, making removal of excess dye essential. Approaching both hurdles, we present the design and synthesis of a small-molecule label comprising both fluorogenic and self-blinking features. Bioorthogonal click chemistry ensures fast and highly selective attachment onto a variety of biomolecular targets. Along with spectroscopic characterization, we demonstrate that the probe improves quality and conditions for regular and single-molecule localization microscopy on live-cell samples.


Asunto(s)
Química Clic/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos
5.
J Phys Chem Lett ; 10(20): 6112-6117, 2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31573203

RESUMEN

The 1La and 1Lb classification of electronically excited states of cata-condensed hydrocarbons proposed by Platt in 1949 ( Platt , J. R. J. Chem. Phys. 1949 , 17 , 484 ) is challenged by investigating a series of N-heteronaphthalenes and comparison of their low-lying ππ* excited states to those of naphthalene. The breakdown of Platt's classification scheme for N-heterocycles is highlighted, and a reliable and versatile alternative using exciton analyses is presented. The strength of electron-hole correlation turns out to be the most reliable distinguishing feature, and thus, an alternative nomenclature of 1Lw (weakly correlated) and 1Ls (strongly correlated) is proposed. Furthermore, fundamental guidelines for their property modulation through N-atom substitution patterns are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA