Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Molecules ; 29(18)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339374

RESUMEN

Polyethylene terephthalate (PET) is one of the most produced plastic materials in the world. The emergence of microplastics and nanoplastics (MPs/NPs) as a significant environmental contaminant has become a matter of increasing concern. While the toxicological effects of PET NPs have been widely researched, there is a lack of methodologies for studying their accumulation. The present study introduces a novel method to monitor the distribution of PET NPs in germinating wheat (Triticum aestivum L.) seeds. This involves the functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with PET NPs (PET-fSPIONs) coupled with magnetic resonance microimaging (µMRI) to provide insight into their distribution within the seed. The present study has demonstrated that PET-fSPIONs accumulate in specific regions of germinating wheat seeds, including the shoot apical meristem, the radicle, the coleoptile, the plumule, and the scutellum. Furthermore, the accumulation of PET-fSPIONs has been shown to exert a discernible effect on spin-spin relaxation (T2), as observed via MRI and quantitative T2 relaxation time analysis. The accumulation of PET NPs in embryo regions was also confirmed by SEM. Diffusion-weighted magnetic resonance imaging (DW-MRI) and non-invasive chemical shift imaging analyses demonstrated that PET NPs resulted in restricted diffusion within the highlighted areas, as well as an impact on lipid content. Our study reveals that using µMRI with fSPIONs provides a non-invasive method to monitor the biodistribution of PET nanoparticles in wheat seeds. Additionally, it offers valuable insights into the microstructural interactions of PET.


Asunto(s)
Imagen por Resonancia Magnética , Tereftalatos Polietilenos , Triticum , Tereftalatos Polietilenos/química , Imagen por Resonancia Magnética/métodos , Triticum/química , Triticum/metabolismo , Microplásticos/química , Semillas/química , Semillas/metabolismo , Nanopartículas/química , Germinación , Nanopartículas Magnéticas de Óxido de Hierro/química
2.
ACS Omega ; 8(44): 41107-41119, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37970047

RESUMEN

A series of ZSM-5 zeolite materials were synthesized from organic structure-directing agent (OSDA)-free seeded systems, including nanosized silicalite-1 (12 wt % water suspension or in powder form) or nanosized ZSM-5 (powder form of ZSM-5 prepared at 100 or 170 °C). The physicochemical characterization revealed aggregated species in the samples based on silicalite-1. Contrarily, the catalysts based on ZSM-5 seeds revealed isolated copper species, and thus, higher NO conversion during the selective catalytic reduction of NOx with NH3 (NH3-SCR-DeNOx) was observed. Furthermore, a comparison of the Cu-containing ZSM-5 catalysts, conventionally prepared in the presence of OSDAs and prepared with an environmentally more benign approach (without OSDAs), revealed their comparable activity in NH3-SCR-DeNOx.

3.
Small ; 19(26): e2206438, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960479

RESUMEN

DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Paladio , Nanopartículas del Metal/química , Nanoestructuras/química , ADN/química , Oro/química
4.
Sci Rep ; 13(1): 1891, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732581

RESUMEN

Plastic pollution, especially by nanoplastics (NPs), has become an emerging topic due to the widespread existence and accumulation in the environment. The research on bioaccumulation and toxicity mechanism of NPs from polyethylene terephthalate (PET), which is widely used for packaging material, have been poorly investigated. Herein, we report the first use of high-resolution magic-angle spinning (HRMAS) NMR based metabolomics in combination with toxicity assay and behavioural end points to get systems-level understanding of toxicity mechanism of PET NPs in intact zebrafish embryos. PET NPs exhibited significant alterations on hatching and survival rate. Accumulation of PET NPs in larvae were observed in liver, intestine, and kidney, which coincide with localization of reactive oxygen species in these areas. HRMAS NMR data reveal that PET NPs cause: (1) significant alteration of metabolites related to targeting of the liver and pathways associated with detoxification and oxidative stress; (2) impairment of mitochondrial membrane integrity as reflected by elevated levels of polar head groups of phospholipids; (3) cellular bioenergetics as evidenced by changes in numerous metabolites associated with interrelated pathways of energy metabolism. Taken together, this work provides for the first time a comprehensive system level understanding of toxicity mechanism of PET NPs exposure in intact larvae.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/metabolismo , Microplásticos/toxicidad , Microplásticos/metabolismo , Tereftalatos Polietilenos/farmacología , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Larva/metabolismo , Embrión no Mamífero/metabolismo , Contaminantes Químicos del Agua/toxicidad
5.
RSC Adv ; 12(40): 26382, 2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36275089

RESUMEN

[This corrects the article DOI: 10.1039/D2RA01459A.].

6.
RSC Adv ; 12(26): 16875-16885, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35754876

RESUMEN

Thermally stable, highly mesoporous Si-stabilized ZrO2 was prepared by sol-gel-synthesis. By utilizing the surfactant dodecylamine (DDA), large mesopores with a pore width of ∼9.4 nm are formed. Combined with an NH3-treatment on the hydrogel, a high specific surface area of up to 225 m2 g-1 and pore volume up to 0.46 cm3 g-1 are obtained after calcination at 973 K. The individual contributions of Si-addition, DDA surfactant and the NH3-treatment on the resulting pore system were studied by inductively coupled plasma with optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), N2 sorption, and transmission electron microscopy (TEM). Electron tomography was applied to visualize and investigate the mesopore network in 3D space. While Si prevents the growth of ZrO2 crystallites and stabilizes the t-ZrO2 phase, DDA generates a homogeneous mesopore network within the zirconia. The NH3-treatment unblocks inaccessible pores, thereby increasing specific surface area and pore volume while retaining the pore width distribution.

7.
J Dent ; 102: 103495, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33038439

RESUMEN

OBJECTIVES: The goal of this study was to show the potential of the inexpensive macro photography technique for application in various fields of contemporary dental materials science. The method was used for studying surface characteristics for fractographic evaluation, topography analysis, and for the measurement of optical properties such as translucency and opalescence. MATERIALS AND METHODS: The variable test setup consisted of a digital camera with macro or microscopic objectives (combined with a lens tube and an objective adapter). The distance between object surface and objectives was controlled by an automatic stacking unit with a software-controlled mobile object slide. The exposure was carried out by LED light sources and a standard illuminant (D55). RESULTS: Highly resolved pictures with fine details, high focal depth, flexible imaging by adjusting the illuminates in different angles, and the possibility of 3D topography imaging are the main reasons why macro photography proved to be a suitable imaging method for fractographic analyses. The automatic focal stacking technique was a powerful tool for imaging distinct topographies in high-resolution with nearly unlimited focal depth and 3D surface visualisation. Translucency as well as opalescence, measured with the macro photography produced differed from the measurements performed with a conventional spectrophotometer. CONCLUSIONS: The modular structure of the cost-effective macro photography setup enables diverse applications such as identification of material groups, fractography analysis, and 3D surface visualisation. Quantification of colour, translucency, as well as opalescence under condition of the microscopic scale requires further research.


Asunto(s)
Ciencia de los Materiales , Fotograbar , Color , Programas Informáticos
8.
Beilstein J Nanotechnol ; 10: 2039-2061, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31728253

RESUMEN

In this contribution, the preparation of hierarchically structured ETS-10-based catalysts exhibiting notably higher activity in the conversion of triolein with methanol compared to microporous titanosilicate is presented. Triolein, together with its unsaturated analog trilinolein, represent the most prevalent triglycerides in oils. The introduction of mesopores by post-synthetic treatment with hydrogen peroxide and a subsequent calcination step results in the generation of an additional active surface with Brønsted basic sites becoming accessible for triolein and enhancing the rate of transesterification. The resulting catalyst exhibits a comparable triolein conversion (≈73%) after 4 h of reaction to CaO (≈76%), which is reportedly known to be highly active in the transesterification of triglycerides. In addition, while CaO showed a maximum conversion of 83% after 24 h, the ETS-10-based catalyst reached 100% after 8 h, revealing its higher stability compared to CaO. The following characteristics of the catalysts were experimentally addressed - crystal structure (X-ray diffraction, transmission electron microscopy), crystal shape and size (scanning electron microscopy, laser diffraction), textural properties (N2 sorption, Hg porosimetry), presence of hydroxyl groups and active sites (temperature-programmed desorption of NH3 and CO2, 29Si magic angle spinning nuclear magnetic resonance (NMR)), mesopore accessibility and diffusion coefficient of adsorbed triolein (pulsed field gradient NMR), pore interconnectivity (variable temperature and exchange spectroscopy experiments using hyperpolarized 129Xe NMR) and oxidation state of Ti atoms (electron paramagnetic resonance). The obtained results enabled the detailed understanding of the impact of the post-synthetic treatment applied to the ETS-10 titanosilicate with respect to the catalytic activity in the heterogeneously catalyzed transesterification of triglycerides.

9.
Materials (Basel) ; 10(7)2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28773052

RESUMEN

The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy <100 eV) is capable to modify the characteristics of the growing film without generating a large number of irradiation induced defects. The nitrogen ion beam assisted molecular beam epitaxy (ion energy <25 eV) is used to deposit GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

10.
Micron ; 73: 1-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25846303

RESUMEN

Ion-beam assisted molecular-beam epitaxy was used for direct growth of epitaxial GaN thin films on super-polished 6H-SiC(0001) substrates. The GaN films with different film thicknesses were studied using reflection high energy electron diffraction, X-ray diffraction, cathodoluminescence and primarily aberration-corrected scanning transmission electron microscopy techniques. Special attention was devoted to the microstructural characterization of GaN thin films and the GaN-SiC interface on the atomic scale. The results show a variety of defect types in the GaN thin films and at the GaN-SiC interface. A high crystalline quality of the produced hexagonal GaN thin films was demonstrated. The gained results are discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA