Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Aging ; 1(1): 124-141, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-34796338

RESUMEN

The impact of healthy aging on molecular programming of immune cells is poorly understood. Here, we report comprehensive characterization of healthy aging in human classical monocytes, with a focus on epigenomic, transcriptomic, and proteomic alterations, as well as the corresponding proteomic and metabolomic data for plasma, using healthy cohorts of 20 young and 20 older males (~27 and ~64 years old on average). For each individual, we performed eRRBS-based DNA methylation profiling, which allowed us to identify a set of age-associated differentially methylated regions (DMRs) - a novel, cell-type specific signature of aging in DNA methylome. Hypermethylation events were associated with H3K27me3 in the CpG islands near promoters of lowly-expressed genes, while hypomethylated DMRs were enriched in H3K4me1 marked regions and associated with age-related increase of expression of the corresponding genes, providing a link between DNA methylation and age-associated transcriptional changes in primary human cells.


Asunto(s)
Epigénesis Genética , Envejecimiento Saludable , Masculino , Humanos , Persona de Mediana Edad , Epigenoma , Monocitos , Proteómica , Metilación de ADN/genética
2.
Nat Commun ; 11(1): 3158, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572033

RESUMEN

Efficient repair of DNA double-strand breaks (DSBs) requires a coordinated DNA Damage Response (DDR), which includes phosphorylation of histone H2Ax, forming γH2Ax. This histone modification spreads beyond the DSB into neighboring chromatin, generating a DDR platform that protects against end disassociation and degradation, minimizing chromosomal rearrangements. However, mechanisms that determine the breadth and intensity of γH2Ax domains remain unclear. Here, we show that chromosomal contacts of a DSB site are the primary determinants for γH2Ax landscapes. DSBs that disrupt a topological border permit extension of γH2Ax domains into both adjacent compartments. In contrast, DSBs near a border produce highly asymmetric DDR platforms, with γH2Ax nearly absent from one broken end. Collectively, our findings lend insights into a basic DNA repair mechanism and how the precise location of a DSB may influence genome integrity.


Asunto(s)
Roturas del ADN de Doble Cadena , Daño del ADN , Reparación del ADN , Histonas/metabolismo , Animales , Línea Celular Transformada , Cromatina/metabolismo , Ratones , Fosforilación
3.
mBio ; 11(2)2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32156810

RESUMEN

Although the pathogen recognition receptor pathways that activate cell-intrinsic antiviral responses are well delineated, less is known about how the host regulates this response to prevent sustained signaling and possible immune-mediated damage. Using a genome-wide CRISPR-Cas9 screening approach to identify host factors that modulate interferon-stimulated gene (ISG) expression, we identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1), a previously described inhibitor of retrovirus integration, as a modulator of basal cell-intrinsic immunity. Ablation of Banf1 by gene editing resulted in chromatin activation near host defense genes with associated increased expression of ISGs, including Oas2, Rsad2 (viperin), Ifit1, and ISG15 The phenotype in Banf1-deficient cells occurred through a cGAS-, STING-, and IRF3-dependent signaling axis, was associated with reduced infection of RNA and DNA viruses, and was reversed in Banf1 complemented cells. Confocal microscopy and biochemical studies revealed that a loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline. Our study identifies an undescribed role for Banf1 in regulating the levels of cytoplasmic DNA and cGAS-dependent ISG homeostasis and suggests possible therapeutic directions for promoting or inhibiting cell-intrinsic innate immune responses.IMPORTANCE Although the interferon (IFN) signaling pathway is a key host mechanism to restrict infection of a diverse range of viral pathogens, its unrestrained activity either at baseline or in the context of an immune response can result in host cell damage and injury. Here, we used a genome-wide CRISPR-Cas9 screen and identified the DNA binding protein Barrier-to-autointegration factor 1 (Banf1) as a modulator of basal cell-intrinsic immunity. A loss of Banf1 expression resulted in higher level of cytosolic double-stranded DNA at baseline, which triggered IFN-stimulated gene expression via a cGAS-STING-IRF3 axis that did not require type I IFN or STAT1 signaling. Our experiments define a regulatory network in which Banf1 limits basal inflammation by preventing self DNA accumulation in the cytosol.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/inmunología , Proteínas Nucleares/inmunología , Nucleotidiltransferasas/inmunología , Animales , Sistemas CRISPR-Cas , Línea Celular , Proteínas de Unión al ADN/genética , Edición Génica , Regulación de la Expresión Génica , Homeostasis/inmunología , Humanos , Inmunidad Innata , Interferones/inmunología , Ratones , Microglía/inmunología , Proteínas Nucleares/genética , Transducción de Señal
4.
Sci Immunol ; 4(40)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586012

RESUMEN

Many gut functions are attuned to circadian rhythm. Intestinal group 3 innate lymphoid cells (ILC3s) include NKp46+ and NKp46- subsets, which are RORγt dependent and provide mucosal defense through secretion of interleukin-22 (IL-22) and IL-17. Because ILC3s highly express some key circadian clock genes, we investigated whether ILC3s are also attuned to circadian rhythm. We noted circadian oscillations in the expression of clock and cytokine genes, such as REV-ERBα, IL-22, and IL-17, whereas acute disruption of the circadian rhythm affected cytokine secretion by ILC3s. Because of prominent and rhythmic expression of REV-ERBα in ILC3s, we also investigated the impact of constitutive deletion of REV-ERBα, which has been previously shown to inhibit the expression of a RORγt repressor, NFIL3, while also directly antagonizing DNA binding of RORγt. Development of the NKp46+ ILC3 subset was markedly impaired, with reduced cell numbers, RORγt expression, and IL-22 production in REV-ERBα-deficient mice. The NKp46- ILC3 subsets developed normally, potentially due to compensatory expression of other clock genes, but IL-17 secretion paradoxically increased, probably because RORγt was not antagonized by REV-ERBα. We conclude that ILC3s are attuned to circadian rhythm, but clock regulator REV-ERBα also has circadian-independent impacts on ILC3 development and functions due to its roles in the regulation of RORγt.


Asunto(s)
Ritmo Circadiano/inmunología , Inmunidad Innata/inmunología , Intestinos/inmunología , Linfocitos/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/inmunología , Animales , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Noqueados , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/inmunología
5.
Mol Cell Biol ; 39(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31591143

RESUMEN

DNA damage responses (DDR) to double-strand breaks (DSBs) alter cellular transcription programs at the genome-wide level. Through processes that are less well understood, DSBs also alter transcriptional responses locally, which may be important for efficient DSB repair. Here, we developed an approach to elucidate the cis-acting responses to DSBs in G1 phase cells. We found that DSBs within a gene body silence its expression, as well as the transcription of local undamaged genes at a distance defined by the spread of γ-H2AX from the DSB. Importantly, DSBs not only repress ongoing transcription but also block the inducible expression of regional genes. DSB-mediated transcriptional repression depends on DDR signaling but does not require the generation of inaccessible chromatin. Our findings demonstrate that in G1 phase cells, DDR signaling establishes a robust and extensive region of transcriptional repression spreading from DSB sites and introduce an approach to study the mechanistic impact of targeted DNA breaks in nearly any chromatin environment.


Asunto(s)
Reparación del ADN/genética , Fase G1/genética , Elementos Silenciadores Transcripcionales/genética , Animales , Ciclo Celular/genética , Línea Celular , ADN/genética , Roturas del ADN de Doble Cadena , Daño del ADN/fisiología , Reparación del ADN por Unión de Extremidades/genética , Reparación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Fase G1/fisiología , Humanos , Ratones , Elementos Reguladores de la Transcripción/genética , Elementos Reguladores de la Transcripción/fisiología , Elementos Silenciadores Transcripcionales/fisiología
6.
Cell ; 176(1-2): 348-360.e12, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30595449

RESUMEN

Natural killer (NK) cells develop from common progenitors but diverge into distinct subsets, which differ in cytokine production, cytotoxicity, homing, and memory traits. Given their promise in adoptive cell therapies for cancer, a deeper understanding of regulatory modules controlling clinically beneficial NK phenotypes is of high priority. We report integrated "-omics" analysis of human NK subsets, which revealed super-enhancers associated with gene cohorts that may coordinate NK functions and localization. A transcription factor-based regulatory scheme also emerged, which is evolutionarily conserved and shared by innate and adaptive lymphocytes. For both NK and T lineages, a TCF1-LEF1-MYC axis dominated the regulatory landscape of long-lived, proliferative subsets that traffic to lymph nodes. In contrast, effector populations circulating between blood and peripheral tissues shared a PRDM1-dominant landscape. This resource defines transcriptional modules, regulated by feedback loops, which may be leveraged to enhance phenotypes for NK cell-based therapies.


Asunto(s)
Células Asesinas Naturales/clasificación , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Citocinas/inmunología , Citocinas/metabolismo , Regulación de la Expresión Génica/genética , Regulación de la Expresión Génica/inmunología , Humanos , Fenotipo
7.
Cell ; 165(5): 1134-1146, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27156452

RESUMEN

Innate lymphoid cells (ILCs) serve as sentinels in mucosal tissues, sensing release of soluble inflammatory mediators, rapidly communicating danger via cytokine secretion, and functioning as guardians of tissue homeostasis. Although ILCs have been extensively studied in model organisms, little is known about these "first responders" in humans, especially their lineage and functional kinships to cytokine-secreting T helper (Th) cell counterparts. Here, we report gene regulatory circuitries for four human ILC-Th counterparts derived from mucosal environments, revealing that each ILC subset diverges as a distinct lineage from Th and circulating natural killer cells but shares circuitry devoted to functional polarization with their Th counterparts. Super-enhancers demarcate cohorts of cell-identity genes in each lineage, uncovering new modes of regulation for signature cytokines, new molecules that likely impart important functions to ILCs, and potential mechanisms for autoimmune disease SNP associations within ILC-Th subsets.


Asunto(s)
Linfocitos/citología , Linfocitos/inmunología , Inmunidad Adaptativa , Animales , Citocinas/inmunología , Citocinas/metabolismo , Elementos de Facilitación Genéticos , Humanos , Inmunidad Innata , Inmunidad Mucosa , Células Asesinas Naturales , Linfocitos/metabolismo , Ratones , Tonsila Palatina/citología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA