Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Front Immunol ; 14: 1138629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37026013

RESUMEN

Introduction: Antibody therapeutic strategies have served an important role during the COVID-19 pandemic, even as their effectiveness has waned with the emergence of escape variants. Here we sought to determine the concentration of convalescent immunoglobulin required to protect against disease from SARS-CoV-2 in a Syrian golden hamster model. Methods: Total IgG and IgM were isolated from plasma of SARS-CoV-2 convalescent donors. Dose titrations of IgG and IgM were infused into hamsters 1 day prior to challenge with SARS-CoV-2 Wuhan-1. Results: The IgM preparation was found to have ~25-fold greater neutralization potency than IgG. IgG infusion protected hamsters from disease in a dose-dependent manner, with detectable serum neutralizing titers correlating with protection. Despite a higher in vitro neutralizing potency, IgM failed to protect against disease when transferred into hamsters. Discussion: This study adds to the growing body of literature that demonstrates neutralizing IgG antibodies are important for protection from SARS-CoV-2 disease, and confirms that polyclonal IgG in sera can be an effective preventative strategy if the neutralizing titers are sufficiently high. In the context of new variants, against which existing vaccines or monoclonal antibodies have reduced efficacy, sera from individuals who have recovered from infection with the emerging variant may potentially remain an efficacious tool.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Humanos , Pandemias , Inmunoglobulina G , Anticuerpos Neutralizantes , Mesocricetus , Sobrevivientes
2.
bioRxiv ; 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-35982683

RESUMEN

Despite effective countermeasures, SARS-CoV-2 persists worldwide due to its ability to diversify and evade human immunity1. This evasion stems from amino-acid substitutions, particularly in the receptor-binding domain of the spike, that confer resistance to vaccines and antibodies 2-16. To constrain viral escape through resistance mutations, we combined antibody variable regions that recognize different receptor binding domain (RBD) sites17,18 into multispecific antibodies. Here, we describe multispecific antibodies, including a trispecific that prevented virus escape >3000-fold more potently than the most effective clinical antibody or mixtures of the parental antibodies. Despite being generated before the evolution of Omicron, this trispecific antibody potently neutralized all previous variants of concern and major Omicron variants, including the most recent BA.4/BA.5 strains at nanomolar concentrations. Negative stain electron microscopy revealed that synergistic neutralization was achieved by engaging different epitopes in specific orientations that facilitated inter-spike binding. An optimized trispecific antibody also protected Syrian hamsters against Omicron variants BA.1, BA.2 and BA.5, each of which uses different amino acid substitutions to mediate escape from therapeutic antibodies. Such multispecific antibodies decrease the likelihood of SARS-CoV-2 escape, simplify treatment, and maximize coverage, providing a strategy for universal antibody therapies that could help eliminate pandemic spread for this and other pathogens.

3.
NPJ Vaccines ; 7(1): 2, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013325

RESUMEN

SARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.

4.
Emerg Microbes Infect ; 10(1): 2016-2029, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34651563

RESUMEN

ABSTRACTA COVID-19 vaccine that can give early protection is needed to eliminate the viral spread efficiently. Here, we demonstrate the development of a nanoparticle vaccine candidate, REVC-128, in which multiple trimeric spike ectodomains with glycine (G) at position 614 were multimerized onto a nanoparticle. In-vitro characterization of this vaccine confirms its structural and antigenic integrity. In-vivo immunogenicity evaluation in mice indicates that a single dose of this vaccine induces potent serum neutralizing antibody titre at two weeks post-immunization. This is significantly higher than titre caused by trimeric spike protein without nanoparticle presentation. The comparison of serum binding to spike subunits between animals immunized by a spike with and without nanoparticle presentation indicates that nanoparticle prefers the display of spike RBD (Receptor-Binding Domain) over S2 subunit, likely resulting in a more neutralizing but less cross-reactive antibody response. Moreover, a Syrian golden hamster in-vivo model for the SARS-CoV-2 virus challenge was implemented two weeks post a single dose of REVC-128 immunization. The results showed that vaccination protects hamsters against the SARS-CoV-2 virus challenge with evidence of steady body weight, suppressed viral loads and alleviation of tissue damage for protected animals, compared with ∼10% weight loss, high viral loads and tissue damage in unprotected animals. Furthermore, the data showed that vaccine REVC-128 is thermostable at up to 37°C for at least 4 weeks. These findings, along with a history of safety for protein vaccines, suggest that the REVC-128 is a safe, stable and efficacious single-shot vaccine to give the earliest protection against SARS-CoV-2 infection.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Nanopartículas/química , SARS-CoV-2 , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/sangre , Formación de Anticuerpos , Vacunas contra la COVID-19/administración & dosificación , Cricetinae , Humanos , Inmunización , Esquemas de Inmunización , Inmunogenicidad Vacunal , Mesocricetus , Ratones , Glicoproteína de la Espiga del Coronavirus , Vacunación , Carga Viral
5.
Sci Transl Med ; 13(618): eabj3789, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34705477

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern have emerged and may pose a threat to both the efficacy of vaccines based on the original WA1/2020 strain and the natural immunity induced by infection with earlier SARS-CoV-2 variants. We investigated how mutations in the spike protein of circulating SARS-CoV-2 variants, which have been shown to partially evade neutralizing antibodies, affect natural and vaccine-induced immunity. We adapted a Syrian hamster model of moderate to severe clinical disease for two variant strains of SARS-CoV-2: B.1.1.7 (alpha variant) and B.1.351 (beta variant). We then assessed the protective efficacy conferred by either natural immunity from WA1/2020 infection or by vaccination with a single dose of the adenovirus serotype 26 vaccine, Ad26.COV2.S. Primary infection with the WA1/2020 strain provided potent protection against weight loss and viral replication in lungs after rechallenge with WA1/2020, B.1.1.7, or B.1.351. Ad26.COV2.S induced cross-reactive binding and neutralizing antibodies that were reduced against the B.1.351 strain compared with WA1/2020 but nevertheless still provided robust protection against B.1.351 challenge, as measured by weight loss and pathology scoring in the lungs. Together, these data support hamsters as a preclinical model to study protection against emerging variants of SARS-CoV-2 conferred by prior infection or vaccination.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ad26COVS1 , Animales , Vacunas contra la COVID-19 , Cricetinae , Humanos , Vacunación
6.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34711815

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

7.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493582

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs). Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access. Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing cost. These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples. Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2. Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Ingeniería de Proteínas/métodos , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales , Sitios de Unión , COVID-19/virología , Vacunas contra la COVID-19/economía , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Modelos Moleculares , Unión Proteica , Conformación Proteica , Saccharomycetales/metabolismo , Vacunas de Subunidad
8.
Science ; 373(6561): eabj0299, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34529476

RESUMEN

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. Here, nonhuman primates (NHPs) received either no vaccine or doses ranging from 0.3 to 100 µg of the mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine. mRNA-1273 vaccination elicited circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs after SARS-CoV-2 challenge in vaccinated animals and most strongly correlated with levels of anti­S antibody and neutralizing activity. Lower antibody levels were needed for reduction of viral replication in the lower airway than in the upper airway. Passive transfer of mRNA-1273­induced immunoglobulin G to naïve hamsters was sufficient to mediate protection. Thus, mRNA-1273 vaccine­induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 in NHPs.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Afinidad de Anticuerpos , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/virología , Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , COVID-19/virología , Femenino , Esquemas de Inmunización , Inmunización Pasiva , Inmunización Secundaria , Inmunoglobulina G/inmunología , Memoria Inmunológica , Pulmón/inmunología , Pulmón/virología , Macaca mulatta , Masculino , Mesocricetus , Mucosa Nasal/inmunología , Mucosa Nasal/virología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Potencia de la Vacuna , Replicación Viral
9.
Nat Immunol ; 22(10): 1306-1315, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34417590

RESUMEN

B.1.351 is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant most resistant to antibody neutralization. We demonstrate how the dose and number of immunizations influence protection. Nonhuman primates received two doses of 30 or 100 µg of Moderna's mRNA-1273 vaccine, a single immunization of 30 µg, or no vaccine. Two doses of 100 µg of mRNA-1273 induced 50% inhibitory reciprocal serum dilution neutralizing antibody titers against live SARS-CoV-2 p.Asp614Gly and B.1.351 of 3,300 and 240, respectively. Higher neutralizing responses against B.1.617.2 were also observed after two doses compared to a single dose. After challenge with B.1.351, there was ~4- to 5-log10 reduction of viral subgenomic RNA and low to undetectable replication in bronchoalveolar lavages in the two-dose vaccine groups, with a 1-log10 reduction in nasal swabs in the 100-µg group. These data establish that a two-dose regimen of mRNA-1273 will be critical for providing upper and lower airway protection against major variants of concern.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Primates/inmunología , SARS-CoV-2/inmunología , Vacuna nCoV-2019 mRNA-1273 , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Macaca mulatta , Masculino , Mesocricetus , Primates/virología , ARN Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación/métodos , Células Vero , Carga Viral/métodos
10.
bioRxiv ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34159328

RESUMEN

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the B.1.1.7 and B.1.351 VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) immunogen dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose two vaccinations. SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

11.
bioRxiv ; 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34075375

RESUMEN

BACKGROUND: Vaccine efficacy against the B.1.351 variant following mRNA-1273 vaccination in humans has not been determined. Nonhuman primates (NHP) are a useful model for demonstrating whether mRNA-1273 mediates protection against B.1.351. METHODS: Nonhuman primates received 30 or 100 µg of mRNA-1273 as a prime-boost vaccine at 0 and 4 weeks, a single immunization of 30 µg at week 0, or no vaccine. Antibody and T cell responses were assessed in blood, bronchioalveolar lavages (BAL), and nasal washes. Viral replication in BAL and nasal swabs were determined by qRT-PCR for sgRNA, and histopathology and viral antigen quantification were performed on lung tissue post-challenge. RESULTS: Eight weeks post-boost, 100 µg x2 of mRNA-1273 induced reciprocal ID 50 neutralizing geometric mean titers against live SARS-CoV-2 D614G and B.1.351 of 3300 and 240, respectively, and 430 and 84 for the 30 µg x2 group. There were no detectable neutralizing antibodies against B.1351 after the single immunization of 30 µg. On day 2 following B.1.351 challenge, sgRNA in BAL was undetectable in 6 of 8 NHP that received 100 µg x2 of mRNA-1273, and there was a ∼2-log reduction in sgRNA in NHP that received two doses of 30 µg compared to controls. In nasal swabs, there was a 1-log 10 reduction observed in the 100 µg x2 group. There was limited inflammation or viral antigen in lungs of vaccinated NHP post-challenge. CONCLUSIONS: Immunization with two doses of mRNA-1273 achieves effective immunity that rapidly controls lower and upper airway viral replication against the B.1.351 variant in NHP.

12.
bioRxiv ; 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33907752

RESUMEN

Immune correlates of protection can be used as surrogate endpoints for vaccine efficacy. The nonhuman primate (NHP) model of SARS-CoV-2 infection replicates key features of human infection and may be used to define immune correlates of protection following vaccination. Here, NHP received either no vaccine or doses ranging from 0.3 - 100 µg of mRNA-1273, a mRNA vaccine encoding the prefusion-stabilized SARS-CoV-2 spike (S-2P) protein encapsulated in a lipid nanoparticle. mRNA-1273 vaccination elicited robust circulating and mucosal antibody responses in a dose-dependent manner. Viral replication was significantly reduced in bronchoalveolar lavages and nasal swabs following SARS-CoV-2 challenge in vaccinated animals and was most strongly correlated with levels of anti-S antibody binding and neutralizing activity. Consistent with antibodies being a correlate of protection, passive transfer of vaccine-induced IgG to naïve hamsters was sufficient to mediate protection. Taken together, these data show that mRNA-1273 vaccine-induced humoral immune responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP. ONE-SENTENCE SUMMARY: mRNA-1273 vaccine-induced antibody responses are a mechanistic correlate of protection against SARS-CoV-2 infection in NHP.

13.
bioRxiv ; 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33688647

RESUMEN

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

14.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33065030

RESUMEN

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Asunto(s)
COVID-19/complicaciones , COVID-19/inmunología , SARS-CoV-2/genética , Trombosis/complicaciones , Enfermedades Vasculares/complicaciones , Anciano de 80 o más Años , Animales , Lavado Broncoalveolar , Proteína C-Reactiva/análisis , COVID-19/sangre , COVID-19/patología , Activación de Complemento , Citocinas/sangre , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Inflamación/virología , Pulmón/patología , Macaca mulatta , Macrófagos/inmunología , Masculino , Activación Plaquetaria , Trombosis/sangre , Trombosis/patología , Transcriptoma , Enfermedades Vasculares/sangre , Enfermedades Vasculares/patología
15.
Science ; 370(6520): 1110-1115, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33037066

RESUMEN

An urgent global quest for effective therapies to prevent and treat coronavirus disease 2019 (COVID-19) is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987 and REGN10933) that targets nonoverlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques, which may model mild disease, and golden hamsters, which may model more severe disease. We demonstrate that REGN-COV-2 can greatly reduce virus load in the lower and upper airways and decrease virus-induced pathological sequelae when administered prophylactically or therapeutically in rhesus macaques. Similarly, administration in hamsters limits weight loss and decreases lung titers and evidence of pneumonia in the lungs. Our results provide evidence of the therapeutic potential of this antibody cocktail.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/terapia , Animales , COVID-19/prevención & control , Combinación de Medicamentos , Macaca mulatta , Mesocricetus
16.
Nat Med ; 26(11): 1694-1700, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32884153

RESUMEN

Coronavirus disease 2019 (COVID-19) in humans is often a clinically mild illness, but some individuals develop severe pneumonia, respiratory failure and death1-4. Studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in hamsters5-7 and nonhuman primates8-10 have generally reported mild clinical disease, and preclinical SARS-CoV-2 vaccine studies have demonstrated reduction of viral replication in the upper and lower respiratory tracts in nonhuman primates11-13. Here we show that high-dose intranasal SARS-CoV-2 infection in hamsters results in severe clinical disease, including high levels of virus replication in tissues, extensive pneumonia, weight loss and mortality in a subset of animals. A single immunization with an adenovirus serotype 26 vector-based vaccine expressing a stabilized SARS-CoV-2 spike protein elicited binding and neutralizing antibody responses and protected against SARS-CoV-2-induced weight loss, pneumonia and mortality. These data demonstrate vaccine protection against SARS-CoV-2 clinical disease. This model should prove useful for preclinical studies of SARS-CoV-2 vaccines, therapeutics and pathogenesis.


Asunto(s)
Adenoviridae/genética , Vacunas contra la COVID-19/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/uso terapéutico , COVID-19/mortalidad , COVID-19/patología , COVID-19/virología , Vacunas contra la COVID-19/genética , Cricetinae , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Humanos , Masculino , Mesocricetus , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad , Vacunas Sintéticas/genética , Vacunas Sintéticas/uso terapéutico , Carga Viral
17.
Immunity ; 53(4): 724-732.e7, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32783919

RESUMEN

SARS-CoV-2 infection has emerged as a serious global pandemic. Because of the high transmissibility of the virus and the high rate of morbidity and mortality associated with COVID-19, developing effective and safe vaccines is a top research priority. Here, we provide a detailed evaluation of the immunogenicity of lipid nanoparticle-encapsulated, nucleoside-modified mRNA (mRNA-LNP) vaccines encoding the full-length SARS-CoV-2 spike protein or the spike receptor binding domain in mice. We demonstrate that a single dose of these vaccines induces strong type 1 CD4+ and CD8+ T cell responses, as well as long-lived plasma and memory B cell responses. Additionally, we detect robust and sustained neutralizing antibody responses and the antibodies elicited by nucleoside-modified mRNA vaccines do not show antibody-dependent enhancement of infection in vitro. Our findings suggest that the nucleoside-modified mRNA-LNP vaccine platform can induce robust immune responses and is a promising candidate to combat COVID-19.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Betacoronavirus/efectos de los fármacos , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , ARN Mensajero/inmunología , ARN Viral/inmunología , Vacunas Virales/administración & dosificación , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/virología , Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/genética , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Modelos Animales de Enfermedad , Furina/genética , Furina/inmunología , Humanos , Inmunidad Humoral/efectos de los fármacos , Inmunización/métodos , Inmunogenicidad Vacunal , Memoria Inmunológica/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Nanopartículas/química , Neumonía Viral/inmunología , Neumonía Viral/patología , ARN Mensajero/genética , ARN Viral/genética , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Sintéticas , Vacunas Virales/biosíntesis , Vacunas Virales/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA