RESUMEN
Attention deficit is one of the most prominent and disabling symptoms in Fragile X syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in humans and mice with FXS but not in typically developing controls. In both species, males and females were examined. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the poststimulus period during early distractor trials in WT mice, consistent with their known role as error signals. Strikingly, however, VIP cells from Fmr1 -/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells could be a potential therapeutic target for attentional difficulties in FXS.SIGNIFICANCE STATEMENT Sensory hypersensitivity, impulsivity, and persistent inattention are among the most consistent clinical features of FXS, all of which impede daily functioning and create barriers to learning. However, the neural mechanisms underlying sensory over-reactivity remain elusive. To overcome a significant challenge in translational FXS research we demonstrate a compelling alignment of sensory over-reactivity in both humans with FXS and Fmr1 -/- mice (the principal animal model of FXS) using a novel analogous distractor task. Two-photon microscopy in mice revealed that lack of modulation by VIP cells contributes to susceptibility to distractors. Implementing research efforts we describe here can help identify dysfunctional neural mechanisms associated not only with sensory issues but broader impairments, including those in learning and cognition.
Asunto(s)
Síndrome del Cromosoma X Frágil , Péptido Intestinal Vasoactivo , Humanos , Masculino , Femenino , Animales , Ratones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Actividades Cotidianas , Interneuronas , Ratones Noqueados , Modelos Animales de EnfermedadRESUMEN
Discriminating between temporal features in sensory stimuli is critical to complex behavior and decision-making. However, how sensory cortical circuit mechanisms contribute to discrimination between subsecond temporal components in sensory events is unclear. To elucidate the mechanistic underpinnings of timing in primary visual cortex (V1), we recorded from V1 using two-photon calcium imaging in awake-behaving mice performing a go/no-go discrimination timing task, which was composed of patterns of subsecond audiovisual stimuli. In both conditions, activity during the early stimulus period was temporally coordinated with the preferred stimulus. However, while network activity increased in the preferred condition, network activity was increasingly suppressed in the nonpreferred condition over the stimulus period. Multiple levels of analyses suggest that discrimination between subsecond intervals that are contained in rhythmic patterns can be accomplished by local neural dynamics in V1.
Asunto(s)
Corteza Visual , Vigilia , Animales , Ratones , Sensación , Estimulación LuminosaRESUMEN
Attention deficit is one of the most prominent and disabling symptoms in Fragile X Syndrome (FXS). Hypersensitivity to sensory stimuli contributes to attention difficulties by overwhelming and/or distracting affected individuals, which disrupts activities of daily living at home and learning at school. We find that auditory or visual distractors selectively impair visual discrimination performance in both humans and mice with FXS, but not their typically developing controls. Vasoactive intestinal polypeptide (VIP) neurons were significantly modulated by incorrect responses in the post-stimulus period during early distractor trials in WT mice, consistent with their known role as 'error' signals. Strikingly, however, VIP cells from Fmr1-/- mice showed little modulation in error trials, and this correlated with their poor performance on the distractor task. Thus, VIP interneurons and their reduced modulatory influence on pyramidal cells, could be a potential therapeutic target for attentional difficulties in FXS.