Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
ArXiv ; 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39502888

RESUMEN

Calcium signals in pancreatic beta-cells collectives show a sharp transition from uncorrelated to correlated state resembling a phase transition as the slowly increasing glucose concentration crosses the tipping point. However, the exact nature or the order of this phase transition is not well understood. Using confocal microscopy to record the collective calcium activation of beta-cells in an intact islet under changing glucose concentration in increasing and then decreasing way, we first show that in addition to the sharp transition, the coordinated calcium response exhibits a hysteresis indicating a critical, first order transition. A network model of beta-cells combining link selection and coordination mechanisms capture the observed hysteresis loop and the critical nature of the transition. Our results point towards the understanding the role of islets as tipping elements in the pancreas that interconnected by perfusion, diffusion and innervation cause the tipping dynamics and abrupt insulin release.

2.
Diabetes ; 72(9): 1251-1261, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37257067

RESUMEN

The mechanisms accounting for the functional changes of α- and ß-cells over the course of type 1 diabetes (T1D) development are largely unknown. Permitted by our established technology of high spatiotemporal resolution imaging of cytosolic Ca2+ ([Ca2+]c) dynamics on fresh pancreas tissue slices, we tracked the [Ca2+]c dynamic changes, as the assessment of function, in islet α- and ß-cells of female nonobese diabetic (NOD) mice during the development of spontaneous diabetes. We showed that, during the phases of islet inflammation, 8 mmol/L glucose-induced synchronized short [Ca2+]c events in ß-cells were diminished, whereas long [Ca2+]c events were gradually more triggerable at substimulatory 4 and 6 mmol/L glucose. In the islet destruction phase, the synchronized short [Ca2+]c events in a subset of ß-cells resumed at high glucose condition, while the long [Ca2+]c events were significantly elevated already at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of T1D development. At the late islet destruction phase, the α-cell [Ca2+]c events exhibited patterns of synchronicity. Our work has uncovered windows of functional recovery in ß-cells and potential α-cells functional synchronization in NOD mice over the course of T1D development. ARTICLE HIGHLIGHTS: In NOD mice ß-cells, 8 mmol/L glucose-induced synchronized short [Ca2+]c events diminish in the early phases of islet inflammation, and long Ca2+ events became more sensitive to substimulatory 4 and 6 mmol/L glucose. In the late islet destruction phase, the synchronized short [Ca2+]c events in a subset of ß-cells resumed at 8 mmol/L glucose, while the long Ca2+ events were significantly elevated at substimulatory glucose concentrations. In the α-cells, the glucose sensitivity of the [Ca2+]c events persisted throughout the course of type 1 diabetes development. α-Cell [Ca2+]c events occasionally synchronize in the islets with severe ß-cell destruction.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Femenino , Ratones Endogámicos NOD , Calcio , Glucosa/farmacología , Inflamación
3.
Am J Physiol Endocrinol Metab ; 324(1): E42-E55, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449570

RESUMEN

The release of peptide hormones is predominantly regulated by a transient increase in cytosolic Ca2+ concentration ([Ca2+]c). To trigger exocytosis, Ca2+ ions enter the cytosol from intracellular Ca2+ stores or from the extracellular space. The molecular events of late stages of exocytosis, and their dependence on [Ca2+]c, were extensively described in isolated single cells from various endocrine glands. Notably, less work has been done on endocrine cells in situ to address the heterogeneity of [Ca2+]c events contributing to a collective functional response of a gland. For this, ß cell collectives in a pancreatic islet are particularly well suited as they are the smallest, experimentally manageable functional unit, where [Ca2+]c dynamics can be simultaneously assessed on both cellular and collective level. Here, we measured [Ca2+]c transients across all relevant timescales, from a subsecond to a minute time range, using high-resolution imaging with a low-affinity Ca2+ sensor. We quantified the recordings with a novel computational framework for automatic image segmentation and [Ca2+]c event identification. Our results demonstrate that under physiological conditions the duration of [Ca2+]c events is variable, and segregated into three reproducible modes, subsecond, second, and tens of seconds time range, and are a result of a progressive temporal summation of the shortest events. Using pharmacological tools we show that activation of intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives, and that a subset of [Ca2+]c events could be triggered even in the absence of Ca2+ influx across the plasma membrane. In aggregate, our experimental and analytical platform was able to readily address the involvement of intracellular Ca2+ receptors in shaping the heterogeneity of [Ca2+]c responses in collectives of endocrine cells in situ.NEW & NOTEWORTHY Physiological glucose or ryanodine stimulation of ß cell collectives generates a large number of [Ca2+]c events, which can be rapidly assessed with our newly developed automatic image segmentation and [Ca2+]c event identification pipeline. The event durations segregate into three reproducible modes produced by a progressive temporal summation. Using pharmacological tools, we show that activation of ryanodine intracellular Ca2+ receptors is both sufficient and necessary for glucose-dependent [Ca2+]c oscillations in ß cell collectives.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Citosol/metabolismo , Rianodina/metabolismo , Rianodina/farmacología , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Glucosa/metabolismo , Calcio/metabolismo , Señalización del Calcio
4.
Front Endocrinol (Lausanne) ; 13: 1013697, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36387857

RESUMEN

Adrenaline inhibits insulin secretion from pancreatic beta cells to allow an organism to cover immediate energy needs by unlocking internal nutrient reserves. The stimulation of α2-adrenergic receptors on the plasma membrane of beta cells reduces their excitability and insulin secretion mostly through diminished cAMP production and downstream desensitization of late step(s) of exocytotic machinery to cytosolic Ca2+ concentration ([Ca2+]c). In most studies unphysiologically high adrenaline concentrations have been used to evaluate the role of adrenergic stimulation in pancreatic endocrine cells. Here we report the effect of physiological adrenaline levels on [Ca2+]c dynamics in beta cell collectives in mice pancreatic tissue slice preparation. We used confocal microscopy with a high spatial and temporal resolution to evaluate glucose-stimulated [Ca2+]c events and their sensitivity to adrenaline. We investigated glucose concentrations from 8-20 mM to assess the concentration of adrenaline that completely abolishes [Ca2+]c events. We show that 8 mM glucose stimulation of beta cell collectives is readily inhibited by the concentration of adrenaline available under physiological conditions, and that sequent stimulation with 12 mM glucose or forskolin in high nM range overrides this inhibition. Accordingly, 12 mM glucose stimulation required at least an order of magnitude higher adrenaline concentration above the physiological level to inhibit the activity. To conclude, higher glucose concentrations stimulate beta cell activity in a non-linear manner and beyond levels that could be inhibited with physiologically available plasma adrenaline concentration.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Animales , Células Secretoras de Insulina/metabolismo , Epinefrina , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Glucosa/metabolismo , Hormonas Pancreáticas/metabolismo
5.
Front Endocrinol (Lausanne) ; 13: 916688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35837307

RESUMEN

Extracellular pH has the potential to affect various aspects of the pancreatic beta cell function. To explain this effect, a number of mechanisms was proposed involving both extracellular and intracellular targets and pathways. Here, we focus on reassessing the influence of extracellular pH on glucose-dependent beta cell activation and collective activity in physiological conditions. To this end we employed mouse pancreatic tissue slices to perform high-temporally resolved functional imaging of cytosolic Ca2+ oscillations. We investigated the effect of either physiological H+ excess or depletion on the activation properties as well as on the collective activity of beta cell in an islet. Our results indicate that lowered pH invokes activation of a subset of beta cells in substimulatory glucose concentrations, enhances the average activity of beta cells, and alters the beta cell network properties in an islet. The enhanced average activity of beta cells was determined indirectly utilizing cytosolic Ca2+ imaging, while direct measuring of insulin secretion confirmed that this enhanced activity is accompanied by a higher insulin release. Furthermore, reduced functional connectivity and higher functional segregation at lower pH, both signs of a reduced intercellular communication, do not necessary result in an impaired insulin release.


Asunto(s)
Células Secretoras de Insulina , Animales , Calcio/metabolismo , Glucosa/metabolismo , Concentración de Iones de Hidrógeno , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ratones
6.
J Biol Chem ; 298(6): 101998, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35500647

RESUMEN

Opening of two-pore domain K+ channels (K2Ps) is regulated by various external cues, such as pH, membrane tension, or temperature, which allosterically modulate the selectivity filter (SF) gate. However, how these cues cause conformational changes in the SF of some K2P channels remains unclear. Herein, we investigate the mechanisms by which extracellular pH affects gating in an alkaline-activated K2P channel, TALK1, using electrophysiology and molecular dynamics (MD) simulations. We show that R233, located at the N-terminal end of transmembrane segment 4, is the primary pHo sensor. This residue distally regulates the orientation of the carbonyl group at the S1 potassium-binding site through an interacting network composed of residues on transmembrane segment 4, the pore helix domain 1, and the SF. Moreover, in the presence of divalent cations, we found the acidic pH-activated R233E mutant recapitulates the network interactions of protonated R233. Intriguingly, our data further suggested stochastic coupling between R233 and the SF gate, which can be described by an allosteric gating model. We propose that this allosteric model could predict the hybrid pH sensitivity in heterodimeric channels with alkaline-activated and acidic-activated K2P subunits.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Simulación de Dinámica Molecular , Canales de Potasio de Dominio Poro en Tándem/metabolismo
7.
Cells ; 10(7)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201461

RESUMEN

Cholinergic innervation in the pancreas controls both the release of digestive enzymes to support the intestinal digestion and absorption, as well as insulin release to promote nutrient use in the cells of the body. The effects of muscarinic receptor stimulation are described in detail for endocrine beta cells and exocrine acinar cells separately. Here we describe morphological and functional criteria to separate these two cell types in situ in tissue slices and simultaneously measure their response to ACh stimulation on cytosolic Ca2+ oscillations [Ca2+]c in stimulatory glucose conditions. Our results show that both cell types respond to glucose directly in the concentration range compatible with the glucose transporters they express. The physiological ACh concentration increases the frequency of glucose stimulated [Ca2+]c oscillations in both cell types and synchronizes [Ca2+]c oscillations in acinar cells. The supraphysiological ACh concentration further increases the oscillation frequency on the level of individual beta cells, inhibits the synchronization between these cells, and abolishes oscillatory activity in acinar cells. We discuss possible mechanisms leading to the observed phenomena.


Asunto(s)
Acetilcolina/farmacología , Células Acinares/metabolismo , Señalización del Calcio , Citosol/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Citosol/efectos de los fármacos , Femenino , Glucosa/farmacología , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Ratones Endogámicos C57BL , Receptores Muscarínicos/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA