Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 630(8016): 493-500, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718835

RESUMEN

The introduction of AlphaFold 21 has spurred a revolution in modelling the structure of proteins and their interactions, enabling a huge range of applications in protein modelling and design2-6. Here we describe our AlphaFold 3 model with a substantially updated diffusion-based architecture that is capable of predicting the joint structure of complexes including proteins, nucleic acids, small molecules, ions and modified residues. The new AlphaFold model demonstrates substantially improved accuracy over many previous specialized tools: far greater accuracy for protein-ligand interactions compared with state-of-the-art docking tools, much higher accuracy for protein-nucleic acid interactions compared with nucleic-acid-specific predictors and substantially higher antibody-antigen prediction accuracy compared with AlphaFold-Multimer v.2.37,8. Together, these results show that high-accuracy modelling across biomolecular space is possible within a single unified deep-learning framework.


Asunto(s)
Aprendizaje Profundo , Ligandos , Modelos Moleculares , Proteínas , Programas Informáticos , Humanos , Anticuerpos/química , Anticuerpos/metabolismo , Antígenos/metabolismo , Antígenos/química , Aprendizaje Profundo/normas , Iones/química , Iones/metabolismo , Simulación del Acoplamiento Molecular , Ácidos Nucleicos/química , Ácidos Nucleicos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos/normas
2.
Proteins ; 89(12): 1711-1721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34599769

RESUMEN

We describe the operation and improvement of AlphaFold, the system that was entered by the team AlphaFold2 to the "human" category in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The AlphaFold system entered in CASP14 is entirely different to the one entered in CASP13. It used a novel end-to-end deep neural network trained to produce protein structures from amino acid sequence, multiple sequence alignments, and homologous proteins. In the assessors' ranking by summed z scores (>2.0), AlphaFold scored 244.0 compared to 90.8 by the next best group. The predictions made by AlphaFold had a median domain GDT_TS of 92.4; this is the first time that this level of average accuracy has been achieved during CASP, especially on the more difficult Free Modeling targets, and represents a significant improvement in the state of the art in protein structure prediction. We reported how AlphaFold was run as a human team during CASP14 and improved such that it now achieves an equivalent level of performance without intervention, opening the door to highly accurate large-scale structure prediction.


Asunto(s)
Modelos Moleculares , Redes Neurales de la Computación , Pliegue de Proteína , Proteínas , Programas Informáticos , Secuencia de Aminoácidos , Biología Computacional , Aprendizaje Profundo , Conformación Proteica , Proteínas/química , Proteínas/metabolismo , Análisis de Secuencia de Proteína
3.
Nature ; 596(7873): 590-596, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34293799

RESUMEN

Protein structures can provide invaluable information, both for reasoning about biological processes and for enabling interventions such as structure-based drug development or targeted mutagenesis. After decades of effort, 17% of the total residues in human protein sequences are covered by an experimentally determined structure1. Here we markedly expand the structural coverage of the proteome by applying the state-of-the-art machine learning method, AlphaFold2, at a scale that covers almost the entire human proteome (98.5% of human proteins). The resulting dataset covers 58% of residues with a confident prediction, of which a subset (36% of all residues) have very high confidence. We introduce several metrics developed by building on the AlphaFold model and use them to interpret the dataset, identifying strong multi-domain predictions as well as regions that are likely to be disordered. Finally, we provide some case studies to illustrate how high-quality predictions could be used to generate biological hypotheses. We are making our predictions freely available to the community and anticipate that routine large-scale and high-accuracy structure prediction will become an important tool that will allow new questions to be addressed from a structural perspective.


Asunto(s)
Biología Computacional/normas , Aprendizaje Profundo/normas , Modelos Moleculares , Conformación Proteica , Proteoma/química , Conjuntos de Datos como Asunto/normas , Diacilglicerol O-Acetiltransferasa/química , Glucosa-6-Fosfatasa/química , Humanos , Proteínas de la Membrana/química , Pliegue de Proteína , Reproducibilidad de los Resultados
4.
Nature ; 596(7873): 583-589, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34265844

RESUMEN

Proteins are essential to life, and understanding their structure can facilitate a mechanistic understanding of their function. Through an enormous experimental effort1-4, the structures of around 100,000 unique proteins have been determined5, but this represents a small fraction of the billions of known protein sequences6,7. Structural coverage is bottlenecked by the months to years of painstaking effort required to determine a single protein structure. Accurate computational approaches are needed to address this gap and to enable large-scale structural bioinformatics. Predicting the three-dimensional structure that a protein will adopt based solely on its amino acid sequence-the structure prediction component of the 'protein folding problem'8-has been an important open research problem for more than 50 years9. Despite recent progress10-14, existing methods fall far short of atomic accuracy, especially when no homologous structure is available. Here we provide the first computational method that can regularly predict protein structures with atomic accuracy even in cases in which no similar structure is known. We validated an entirely redesigned version of our neural network-based model, AlphaFold, in the challenging 14th Critical Assessment of protein Structure Prediction (CASP14)15, demonstrating accuracy competitive with experimental structures in a majority of cases and greatly outperforming other methods. Underpinning the latest version of AlphaFold is a novel machine learning approach that incorporates physical and biological knowledge about protein structure, leveraging multi-sequence alignments, into the design of the deep learning algorithm.


Asunto(s)
Redes Neurales de la Computación , Conformación Proteica , Pliegue de Proteína , Proteínas/química , Secuencia de Aminoácidos , Biología Computacional/métodos , Biología Computacional/normas , Bases de Datos de Proteínas , Aprendizaje Profundo/normas , Modelos Moleculares , Reproducibilidad de los Resultados , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA