Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Neural Eng ; 21(2)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38579742

RESUMEN

Objective.Electrical neuromodulation is an established non-pharmacological treatment for chronic pain. However, existing devices using pulsatile stimulation typically inhibit pain pathways indirectly and are not suitable for all types of chronic pain. Direct current (DC) stimulation is a recently developed technology which affects small-diameter fibres more strongly than pulsatile stimulation. Since nociceptors are predominantly small-diameter Aδand C fibres, we investigated if this property could be applied to preferentially reduce nociceptive signalling.Approach.We applied a DC waveform to the sciatic nerve in rats of both sexes and recorded multi-unit spinal activity evoked at the hindpaw using various natural stimuli corresponding to different sensory modalities rather than broad-spectrum electrical stimulus. To determine if DC neuromodulation is effective across different types of chronic pain, tests were performed in models of neuropathic and inflammatory pain.Main results.We found that in both pain models tested, DC application reduced responses evoked by noxious stimuli, as well as tactile-evoked responses which we suggest may be involved in allodynia. Different spinal activity of different modalities were reduced in naïve animals compared to the pain models, indicating that physiological changes such as those mediated by disease states could play a larger role than previously thought in determining neuromodulation outcomes.Significance.Our findings support the continued development of DC neuromodulation as a method for reduction of nociceptive signalling, and suggests that it may be effective at treating a broader range of aberrant pain conditions than existing devices.


Asunto(s)
Dolor Crónico , Roedores , Ratas , Animales , Nocicepción , Ratas Sprague-Dawley , Médula Espinal/fisiología
2.
Sci Adv ; 7(3)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523875

RESUMEN

Terminally differentiated murine osteocytes and adipocytes can be reprogrammed using platelet-derived growth factor-AB and 5-azacytidine into multipotent stem cells with stromal cell characteristics. We have now optimized culture conditions to reprogram human adipocytes into induced multipotent stem (iMS) cells and characterized their molecular and functional properties. Although the basal transcriptomes of adipocyte-derived iMS cells and adipose tissue-derived mesenchymal stem cells were similar, there were changes in histone modifications and CpG methylation at cis-regulatory regions consistent with an epigenetic landscape that was primed for tissue development and differentiation. In a non-specific tissue injury xenograft model, iMS cells contributed directly to muscle, bone, cartilage, and blood vessels, with no evidence of teratogenic potential. In a cardiotoxin muscle injury model, iMS cells contributed specifically to satellite cells and myofibers without ectopic tissue formation. Together, human adipocyte-derived iMS cells regenerate tissues in a context-dependent manner without ectopic or neoplastic growth.


Asunto(s)
Azacitidina , Factor de Crecimiento Derivado de Plaquetas , Adipocitos , Tejido Adiposo , Animales , Azacitidina/farmacología , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Células Madre Multipotentes , Músculos
3.
J Comp Neurol ; 529(1): 187-220, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32374027

RESUMEN

The dorsal column nuclei complex (DCN-complex) includes the dorsal column nuclei (DCN, referring to the gracile and cuneate nuclei collectively), external cuneate, X, and Z nuclei, and the median accessory nucleus. The DCN are organized by both somatotopy and modality, and have a diverse range of afferent inputs and projection targets. The functional organization and connectivity of the DCN implicate them in a variety of sensorimotor functions, beyond their commonly accepted role in processing and transmitting somatosensory information to the thalamus, yet this is largely underappreciated in the literature. To consolidate insights into their sensorimotor functions, this review examines the morphology, organization, and connectivity of the DCN and their associated nuclei. First, we briefly discuss the receptors, afferent fibers, and pathways involved in conveying tactile and proprioceptive information to the DCN. Next, we review the modality and somatotopic arrangements of the remaining constituents of the DCN-complex. Finally, we examine and discuss the functional implications of the myriad of DCN-complex projection targets throughout the diencephalon, midbrain, and hindbrain, in addition to their modulatory inputs from the cortex. The organization and connectivity of the DCN-complex suggest that these nuclei should be considered a complex integration and distribution hub for sensorimotor information.


Asunto(s)
Bulbo Raquídeo/fisiología , Red Nerviosa/fisiología , Corteza Somatosensorial/fisiología , Asta Dorsal de la Médula Espinal/fisiología , Tálamo/fisiología , Animales , Humanos , Bulbo Raquídeo/anatomía & histología , Red Nerviosa/anatomía & histología , Corteza Somatosensorial/anatomía & histología , Asta Dorsal de la Médula Espinal/anatomía & histología , Tálamo/anatomía & histología , Tacto/fisiología
4.
Front Syst Neurosci ; 14: 46, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32848640

RESUMEN

Neural prostheses enable users to effect movement through a variety of actuators by translating brain signals into movement control signals. However, to achieve more natural limb movements from these devices, the restoration of somatosensory feedback is required. We used feature-learnability, a machine-learning approach, to assess signal features for their capacity to enhance decoding performance of neural signals evoked by natural tactile and proprioceptive somatosensory stimuli, recorded from the surface of the dorsal column nuclei (DCN) in urethane-anesthetized rats. The highest performing individual feature, spike amplitude, classified somatosensory DCN signals with 70% accuracy. The highest accuracy achieved was 87% using 13 features that were extracted from both high and low-frequency (LF) bands of DCN signals. In general, high-frequency (HF) features contained the most information about peripheral somatosensory events, but when features were acquired from short time-windows, classification accuracy was significantly improved by adding LF features to the feature set. We found that proprioception-dominated stimuli generalize across animals better than tactile-dominated stimuli, and we demonstrate how information that signal features contribute to neural decoding changes over the time-course of dynamic somatosensory events. These findings may inform the biomimetic design of artificial stimuli that can activate the DCN to substitute somatosensory feedback. Although, we investigated somatosensory structures, the feature set we investigated may also prove useful for decoding other (e.g., motor) neural signals.

5.
J Neurotrauma ; 37(21): 2244-2260, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32552352

RESUMEN

Individuals with spinal cord injury (SCI) often develop debilitating neuropathic pain, which may be driven by neuronal damage and neuroinflammation. We have previously demonstrated that treatment using 670 nm (red) light irradiation alters microglia/macrophage responses and alleviates mechanical hypersensitivity at 7 days post-injury (dpi). Here, we investigated the effect of red light on the development of mechanical hypersensitivity, neuronal markers, and glial response in the subacute stage (days 1-7) following SCI. Wistar rats were subjected to a mild hemi-contusion SCI at vertebra T10 or to sham surgery followed by daily red-light treatment (30 min/day; 670 nm LED; 35 mW/cm2) or sham treatment. Mechanical sensitivity of the rat dorsum was assessed from 1 dpi and repeated every second day. Spinal cords were collected at 1, 3, 5, and 7 dpi for analysis of myelination, neurofilament protein NF200 expression, neuronal cell death, reactive astrocytes (glial fibrillary acidic protein [GFAP]+ cells), interleukin 1 ß (IL-1ß) expression, and inducible nitric oxide synthase (iNOS) production in IBA1+ microglia/macrophages. Red-light treatment significantly reduced the cumulative mechanical sensitivity and the hypersensitivity incidence following SCI. This effect was accompanied by significantly reduced neuronal cell death, reduced astrocyte activation, and reduced iNOS expression in IBA1+ cells at the level of the injury. However, myelin and NF200 immunoreactivity and IL-1ß expression in GFAP+ and IBA1+ cells were not altered by red-light treatment. Thus, red-light therapy may represent a useful non-pharmacological approach for treating pain during the subacute period after SCI by decreasing neuronal loss and modulating the inflammatory glial response.


Asunto(s)
Luz , Neuronas/efectos de la radiación , Traumatismos de la Médula Espinal/complicaciones , Animales , Muerte Celular/efectos de la radiación , Modelos Animales de Enfermedad , Hiperalgesia/etiología , Terapia por Luz de Baja Intensidad , Masculino , Neuralgia/etiología , Neuroglía/efectos de la radiación , Neuronas/patología , Ratas , Ratas Wistar
6.
Front Neurosci ; 14: 500, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32508581

RESUMEN

The temporal pattern of action potentials can convey rich information in a variety of sensory systems. We describe a new non-invasive technique that enables precise, reliable generation of action potential patterns in tactile peripheral afferent neurons by brief taps on the skin. Using this technique, we demonstrate sophisticated coding of temporal information in the somatosensory system, that shows that perceived vibration frequency is not encoded in peripheral afferents as was expected by either their firing rate or the underlying periodicity of the stimulus. Instead, a burst gap or silent gap between trains of action potentials conveys frequency information. This opens the possibility of new encoding strategies that could be deployed to convey sensory information using mechanical or electrical stimulation in neural prostheses and brain-machine interfaces, and may extend to senses beyond artificial encoding of aspects of touch. We argue that a focus on appropriate use of effective temporal coding offers more prospects for rapid improvement in the function of these interfaces than attempts to scale-up existing devices.

7.
Front Neurosci ; 14: 156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32184706

RESUMEN

Current neural prostheses can restore limb movement to tetraplegic patients by translating brain signals coding movements to control a variety of actuators. Fast and accurate somatosensory feedback is essential for normal movement, particularly dexterous tasks, but is currently lacking in motor neural prostheses. Attempts to restore somatosensory feedback have largely focused on cortical stimulation which, thus far, have succeeded in eliciting minimal naturalistic sensations. Yet, a question that deserves more attention is whether the cortex is the best place to activate the central nervous system to restore somatosensation. Here, we propose that the brainstem dorsal column nuclei are an ideal alternative target to restore somatosensation. We review some of the recent literature investigating the dorsal column nuclei functional organization and neurophysiology and highlight some of the advantages and limitations of the dorsal column nuclei as a future neural prosthetic target. Recent evidence supports the dorsal column nuclei as a potential neural prosthetic target, but also identifies several gaps in our knowledge as well as potential limitations which need to be addressed before such a goal can become reality.

8.
Front Syst Neurosci ; 13: 11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30983977

RESUMEN

The brainstem dorsal column nuclei (DCN) are essential to inform the brain of tactile and proprioceptive events experienced by the body. However, little is known about how ascending somatosensory information is represented in the DCN. Our objective was to investigate the usefulness of high-frequency (HF) and low-frequency (LF) DCN signal features (SFs) in predicting the nerve from which signals were evoked. We also aimed to explore the robustness of DCN SFs and map their relative information content across the brainstem surface. DCN surface potentials were recorded from urethane-anesthetized Wistar rats during sural and peroneal nerve electrical stimulation. Five salient SFs were extracted from each recording electrode of a seven-electrode array. We used a machine learning approach to quantify and rank information content contained within DCN surface-potential signals following peripheral nerve activation. Machine-learning of SF and electrode position combinations was quantified to determine a hierarchy of information importance for resolving the peripheral origin of nerve activation. A supervised back-propagation artificial neural network (ANN) could predict the nerve from which a response was evoked with up to 96.8 ± 0.8% accuracy. Guided by feature-learnability, we maintained high prediction accuracy after reducing ANN algorithm inputs from 35 (5 SFs from 7 electrodes) to 6 (4 SFs from one electrode and 2 SFs from a second electrode). When the number of input features were reduced, the best performing input combinations included HF and LF features. Feature-learnability also revealed that signals recorded from the same midline electrode can be accurately classified when evoked from bilateral nerve pairs, suggesting DCN surface activity asymmetry. Here we demonstrate a novel method for mapping the information content of signal patterns across the DCN surface and show that DCN SFs are robust across a population. Finally, we also show that the DCN is functionally asymmetrically organized, which challenges our current understanding of somatotopic symmetry across the midline at sub-cortical levels.

9.
J Biophotonics ; 12(7): e201900010, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30851081

RESUMEN

Red-light treatment is emerging as a novel therapy for promoting tissue recovery but data on red-light penetration through human tissues are lacking. We aimed to: (1) determine the effect of light irradiance, tissue thickness, skin tone, sex and bone/muscle content on 660 nm light penetration through common sites of sports injuries, and (2) establish if cadaver tissues serve as a useful model for predicting red-light penetration in live tissues. Live and cadaver human tissues were exposed to 660 nm light at locations across the skull, spinal cord and upper and lower limbs. Red-light was produced by a light emitting diode array of various irradiances (15-500 mW/cm2 ) and measured by a light-probe positioned on the tissue surface opposite to the light emitting diodes. 100 mW/cm2 successfully penetrated tissue <50 mm thick; a disproportionate irradiance increase was required to achieve deeper penetration. Penetration was unaffected by skin tone, increased with irradiance and relative bone/muscle composition, and decreased with greater tissue thickness and in males. Live and cadaveric tissue penetration did not differ statistically for tissues <50 mm but cadavers required more red-light to penetrate >50 mm. These results assist clinicians and researchers in determining red-light treatment intensities for penetrating human tissues.


Asunto(s)
Traumatismos en Atletas/metabolismo , Luz , Caracteres Sexuales , Absorción Fisicoquímica , Adulto , Traumatismos en Atletas/fisiopatología , Cadáver , Susceptibilidad a Enfermedades , Femenino , Humanos , Masculino , Especificidad de Órganos , Pigmentación de la Piel
10.
J Physiol ; 595(13): 4507-4524, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333372

RESUMEN

KEY POINTS: The brainstem dorsal column nuclei (DCN) process sensory information arising from the body before it reaches the brain and becomes conscious. Despite significant investigations into sensory coding in peripheral nerves and the somatosensory cortex, little is known about how sensory information arising from the periphery is represented in the DCN. Following stimulation of hind-limb nerves, we mapped and characterised the evoked electrical signatures across the DCN surface. We show that evoked responses recorded from the DCN surface are highly reproducible and are unique to nerves carrying specific sensory information. ABSTRACT: The brainstem dorsal column nuclei (DCN) play a role in early processing of somatosensory information arising from a variety of functionally distinct peripheral structures, before being transmitted to the cortex via the thalamus. To improve our understanding of how sensory information is represented by the DCN, we characterised and mapped low- (<200 Hz) and high-frequency (550-3300 Hz) components of nerve-evoked DCN surface potentials. DCN surface potentials were evoked by electrical stimulation of the left and right nerves innervating cutaneous structures (sural nerve), or a mix of cutaneous and deep structures (peroneal nerve), in 8-week-old urethane-anaesthetised male Wistar rats. Peroneal nerve-evoked DCN responses demonstrated low-frequency events with significantly longer durations, more high-frequency events and larger magnitudes compared to responses evoked from sural nerve stimulation. Hotspots of low- and high-frequency DCN activity were found ipsilateral to stimulated nerves but were not symmetrically organised. In conclusion, we find that sensory inputs from peripheral nerves evoke unique and characteristic DCN activity patterns that are highly reproducible both within and across animals.


Asunto(s)
Mapeo Encefálico , Tronco Encefálico/fisiología , Potenciales Evocados Somatosensoriales , Animales , Masculino , Ratas , Ratas Wistar , Nervio Ciático/fisiología
11.
J Immunol Methods ; 420: 38-49, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25837415

RESUMEN

Macrophages play a key role in tissue regeneration following peripheral nerve injury by preparing the surrounding parenchyma for regeneration, however, they can be damaging if the response is excessive. Interleukin 10 (IL-10) is a cytokine that promotes macrophages toward an anti-inflammatory/wound healing state (M2 phenotype). The bioactive half-life of IL-10 is dependent on the cellular microenvironment and ranges from minutes to hours in vivo. Our objective was to extend the in vivo bioavailability and bioactivity of IL-10 by attaching the protein onto nanofibrous scaffolds and demonstrating increased expression levels of M2 macrophages when placed around healthy intact peripheral nerves. IL-10 was adsorbed and covalently bound to electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffolds. In vivo bioavailability and bioactivity of IL-10 was confirmed by wrapping IL-10 conjugated nanofibres around the sciatic nerves of Wistar rats and quantifying M2 macrophages immunohistochemically double labelled with ED1 and either arginase 1 or CD206. IL-10 remained immobilised to PCL scaffolds for more than 120 days when stored in phosphate buffered saline at room temperature and for up to 14d ays when implanted around the sciatic nerve. IL-10 conjugated nanofibres successfully induced macrophage polarisation towards the M2 activated state within the scaffold material as well as the adjacent tissue surrounding the nerve. PCL biofunctionalised nanofibres are useful for manipulating the cellular microenvironment. Materials such as these could potentially lead to new therapeutic strategies for nervous tissue injuries as well as provide novel investigative tools for biological research.


Asunto(s)
Interleucina-10/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Nanofibras/química , Nervios Periféricos/inmunología , Poliésteres/farmacología , Andamios del Tejido , Animales , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/farmacología , Interleucina-10/química , Macrófagos/patología , Masculino , Nervios Periféricos/patología , Poliésteres/química , Ratas , Ratas Wistar
12.
J Cereb Blood Flow Metab ; 33(3): 428-39, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23250106

RESUMEN

Despite its limited regenerative capacity, the central nervous system (CNS) shares more repair mechanisms with peripheral tissues than previously recognized. Scar formation is a ubiquitous healing mechanism aimed at patching tissue defects via the generation of fibrous extracellular matrix (ECM). This process, orchestrated by stromal cells, can unfavorably affect the capacity of tissues to restore function. Vascular mural cells have been found to contribute to scarring after spinal cord injury. In the case of stroke, little is known about the responses of pericytes (PCs) and stromal cells. Here, we show that capillary PCs are rapidly lost after cerebral ischemia in both experimental and human stroke. Coincident with this loss is a massive proliferation of resident platelet-derived growth factor receptor beta (PDGFRß)(+) and CD105(+) stromal cells, which originate from the neurovascular unit and deposit ECM in the ischemic mouse brain. The presence of PDGFRß(+) stromal cells demarcates a fibrotic, contracted, and macrophage-laden lesion core from the rim of hypertrophic astroglia in both experimental and human stroke. We suggest that a previously unrecognized population of CNS-resident stromal cells drives a dynamic process of scarring after cerebral ischemia, which appears distinct from the glial scar and represents a novel target for regenerative stroke therapies.


Asunto(s)
Encéfalo/metabolismo , Capilares/metabolismo , Cicatriz/metabolismo , Pericitos/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Antígenos CD/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Capilares/patología , Circulación Cerebrovascular , Cicatriz/patología , Endoglina , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Mutantes , Pericitos/patología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de Superficie Celular/metabolismo , Accidente Cerebrovascular/patología , Células del Estroma/metabolismo , Células del Estroma/patología
13.
J Neurotrauma ; 23(5): 660-73, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16689668

RESUMEN

The immune response contributes to ongoing secondary tissue destruction following spinal cord injury (SCI). Although infiltrating neutrophils and monocytes have been well studied in this process, T-cells have received less attention. The objective of this study was to assess locomotor recovery and tissue morphology after SCI in athymic (nude) rats, in which T-cell numbers are reduced. Results in athymic rats were compared with heterozygote littermates with normal T-cell profiles and with Sprague-Dawley rats from previous studies in our lab. Following transection of rat spinal cords at T10, we assessed the animals' locomotor recovery on a weekly basis for up to 11 weeks, using the Basso-Beattie-Bresnahan locomotor rating scale. Nude rats showed better locomotor recovery than did heterozygote or Sprague-Dawley rats, achieving scores of 5.6 +/- 0.8 versus 1.0 +/- 0.0, respectively (p = 0.002), at 4 weeks postinjury. The improved recovery of nude rats persisted for the 11-week postinjury assessment period, and was consistent with improved spinal reflexes rather than with recovery of descending motor pathways. Anatomical evaluation at 11 weeks indicated no difference in nude versus heterozygote rats in the size or distribution of cavities caudal to the transection site, but secondary damage was more severe rostral to the transection site in heterozygote rats. In neither group did cavities extend beyond 4 mm caudal to the transection site, and were therefore not directly responsible for the functional differences between the two groups. Cellular expression of the microglia/macrophage antigen ectodysplasin A (ED1) was reduced in nude rats as compared to heterozygotes, but no difference was observed in expression levels of 5-hydroxytryptamine, the 200-kDa neurofilament, or glial fibrillary acidic protein. The findings of the study show that a reduction in T-cell numbers significantly improves locomotor recovery after spinal cord transection, indicating a deleterious role for these immune cells in neural repair after trauma.


Asunto(s)
Actividad Motora/inmunología , Recuperación de la Función/inmunología , Traumatismos de la Médula Espinal/inmunología , Animales , Ectodisplasinas , Femenino , Proteína Ácida Fibrilar de la Glía/biosíntesis , Inmunohistoquímica , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas de la Membrana/biosíntesis , Ratas , Ratas Desnudas , Serotonina/biosíntesis , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología , Linfocitos T/inmunología , Factores de Necrosis Tumoral/biosíntesis
14.
Brain Res ; 1036(1-2): 70-6, 2005 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-15725403

RESUMEN

Microinjections of low doses (in the femtomolar or low picomolar range) of angiotensin II (Ang II) into the nucleus tractus solitarii (NTS) evoke depressor responses. In this study we have mapped in the rat the precise location of the subregion within the NTS at which Ang II evokes significant sympathoinhibitory and depressor responses. Microinjections of 1 pmol of Ang II evoked large decreases (>or=20% of baseline) in renal sympathetic nerve activity (RSNA), from a highly restricted region in the medial NTS, at or very close to the level 0.2 mm caudal to the obex. Microinjections of the same dose of Ang II into the commissural or lateral NTS at the same rostrocaudal level, or into the medial and lateral NTS at the level of the obex evoked significantly smaller sympathoinhibitory responses, while microinjections into more rostral or caudal levels of the NTS evoked significant sympathoinhibitory responses even less frequently. In most cases (71%), the sympathoinhibitory responses were accompanied by depressor responses, the magnitudes of which were also greater within the medial NTS at the level 0.2 mm caudal to obex, as compared to the surrounding subregions. The results demonstrate that the cardiovascular effects of Ang II in the NTS are highly site-specific. Taken together with previous studies, the results also indicate that the neurons in the NTS that mediate the Ang II-evoked sympathoinhibition are a discrete subgroup of the population of sympathoinhibitory neurons within the nucleus.


Asunto(s)
Angiotensina II/metabolismo , Vías Eferentes/fisiología , Hipotensión/fisiopatología , Riñón/inervación , Núcleo Solitario/fisiología , Sistema Nervioso Simpático/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Angiotensina II/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Mapeo Encefálico , Vías Eferentes/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Hipotensión/inducido químicamente , Riñón/efectos de los fármacos , Riñón/fisiología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Receptor de Angiotensina Tipo 1/efectos de los fármacos , Receptor de Angiotensina Tipo 1/fisiología , Circulación Renal/efectos de los fármacos , Circulación Renal/fisiología , Núcleo Solitario/anatomía & histología , Núcleo Solitario/efectos de los fármacos , Fibras Simpáticas Posganglionares/efectos de los fármacos , Fibras Simpáticas Posganglionares/fisiología , Sistema Nervioso Simpático/efectos de los fármacos
15.
Eur J Neurosci ; 17(6): 1135-49, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12670302

RESUMEN

Previous research has found that the integrity of a restricted region of the caudal midline medulla (including caudal portions of nucleus raphé obscurus and nucleus raphé pallidus) was critical for vasodepression (hypotension, bradycardia, decreased cardiac contractility) evoked either by haemorrhage or deep pain. In this anatomical tracing study we found that the vasodepressor part of the caudal midline medulla (CMM) receives inputs arising from spinal cord, spinal trigeminal nucleus (SpV) and nucleus of the solitary tract (NTS). Specifically: (i) a spinal-CMM projection arises from neurons of the deep dorsal horn, medial ventral horn and lamina X at all spinal segmental levels, with approximately 60% of the projection originating from the upper cervical spinal cord (C1-C4); (ii) a SpV-CMM projection arises primarily from neurons at the transition between subnucleus caudalis and subnucleus interpolaris; (iii) a NTS-CMM projection arises primarily from neurons in ventrolateral and medial subnuclei. In combination, the specific spinal, SpV and NTS regions which project to the CMM receive the complete range of somatic and visceral afferents known to trigger vasodepression. The role(s) of each specific projection is discussed.


Asunto(s)
Vías Aferentes/anatomía & histología , Bulbo Raquídeo/anatomía & histología , Núcleo Solitario/anatomía & histología , Médula Espinal/anatomía & histología , Núcleo Espinal del Trigémino/anatomía & histología , Animales , Bradicardia/patología , Mapeo Encefálico , Hipotensión/patología , Masculino , Ratas , Ratas Sprague-Dawley , Aferentes Viscerales/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA