Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
J Biomed Sci ; 31(1): 59, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38835012

RESUMEN

Osteosarcoma (OS) is the most prevalent and fatal type of bone tumor. It is characterized by great heterogeneity of genomic aberrations, mutated genes, and cell types contribution, making therapy and patients management particularly challenging. A unifying picture of molecular mechanisms underlying the disease could help to transform those challenges into opportunities.This review deeply explores the occurrence in OS of large-scale RNA regulatory networks, denominated "competing endogenous RNA network" (ceRNET), wherein different RNA biotypes, such as long non-coding RNAs, circular RNAs and mRNAs can functionally interact each other by competitively binding to shared microRNAs. Here, we discuss how the unbalancing of any network component can derail the entire circuit, driving OS onset and progression by impacting on cell proliferation, migration, invasion, tumor growth and metastasis, and even chemotherapeutic resistance, as distilled from many studies. Intriguingly, the aberrant expression of the networks components in OS cells can be triggered also by the surroundings, through cytokines and vesicles, with their bioactive cargo of proteins and non-coding RNAs, highlighting the relevance of tumor microenvironment. A comprehensive picture of RNA regulatory networks underlying OS could pave the way for the development of innovative RNA-targeted and RNA-based therapies and new diagnostic tools, also in the perspective of precision oncology.


Asunto(s)
Osteosarcoma , Humanos , Osteosarcoma/genética , Osteosarcoma/terapia , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/terapia , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Redes Reguladoras de Genes , ARN Circular/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
Cancers (Basel) ; 16(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38672608

RESUMEN

Lung cancer is the leading cause of cancer-related death worldwide. Non-coding RNAs are emerging as critical players for the onset and progression of cancer. Analyses of three different datasets revealed that the lncRNA JPX was overexpressed in adenocarcinoma tissues in comparison to normal lungs, as expected for an oncogene. Intriguingly, the predicted binding miR-378a-3p showed a significant inverse correlation with JPX expression. The lncRNA/miRNA physical interaction was validated by reporter vectors. Then, the oncogenic activity of JPX, the tumor-suppressive role of miR-378a-3p, and the contribution of their functional interaction to cancer hallmarks were demonstrated using assays for cell proliferation, migration, invasion, and 3D-spheroid formation. Finally, molecular circuits were investigated by boosting the expression of both JPX and miR-378a-3p, singularly and in combination, demonstrating that JPX counteracted miR-378a-3p silencing activity toward its oncogenic targets GLUT1, NRP1, YY1, and Wnt5a. Overall, the data unveil a novel ceRNET (competing endogenous RNA network), wherein JPX acts as a ceRNA by binding to miR-378a-3p, thus reducing the miRNA silencing activity toward its downstream targets, and eliciting oncogenic pathways driving lung cancer. The knowledge of the network may pave the way to develop new diagnostic panels, and innovative RNA-targeted and RNA-based therapeutic strategies.

3.
Biology (Basel) ; 13(2)2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38392333

RESUMEN

This study aims to explore the complex role of cannabinoid type 1 receptor (CB1) signaling in the gastrocnemius muscle, assessing physiological processes in both CB1+/+ and CB1-/- mice. The primary focus is to enhance our understanding of how CB1 contributes to mitochondrial homeostasis. At the tissue level, CB1-/- mice exhibit a substantial miRNA-related alteration in muscle fiber composition, characterized by an enrichment of oxidative fibers. CB1 absence induces a significant increase in the oxidative capacity of muscle, supported by elevated in-gel activity of Complex I and Complex IV of the mitochondrial respiratory chain. The increased oxidative capacity is associated with elevated oxidative stress and impaired antioxidant defense systems. Analysis of mitochondrial biogenesis markers indicates an enhanced capacity for new mitochondria production in CB1-/- mice, possibly adapting to altered muscle fiber composition. Changes in mitochondrial dynamics, mitophagy response, and unfolded protein response (UPR) pathways reveal a dynamic interplay in response to CB1 absence. The interconnected mitochondrial network, influenced by increased fusion and mitochondrial UPR components, underlines the dual role of CB1 in regulating both protein quality control and the generation of new mitochondria. These findings deepen our comprehension of the CB1 impact on muscle physiology, oxidative stress, and MQC processes, highlighting cellular adaptability to CB1-/-. This study paves the way for further exploration of intricate signaling cascades and cross-talk between cellular compartments in the context of CB1 and mitochondrial homeostasis.

4.
PLoS One ; 19(1): e0293644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165955

RESUMEN

Small non-coding RNAs (ncRNAs), particularly miRNAs, play key roles in a plethora of biological processes both in health and disease. Although largely operative in the cytoplasm, emerging data indicate their shuttling in different subcellular compartments. Given the central role of mitochondria in cellular homeostasis, here we systematically profiled their small ncRNAs content across mouse tissues that largely rely on mitochondria functioning. The ubiquitous presence of piRNAs in mitochondria (mitopiRNA) of somatic tissues is reported for the first time, supporting the idea of a strong and general connection between mitochondria biology and piRNA pathways. Then, we found groups of tissue-shared and tissue-specific mitochondrial miRNAs (mitomiRs), potentially related to the "basic" or "cell context dependent" biology of mitochondria. Overall, this large data platform will be useful to deepen the knowledge about small ncRNAs processing and their governed regulatory networks contributing to mitochondria functions.


Asunto(s)
MicroARNs , ARN Pequeño no Traducido , Animales , Ratones , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Citoplasma/metabolismo
5.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240232

RESUMEN

Transcriptome complexity is emerging as an unprecedented and fascinating domain, especially by high-throughput sequencing technologies that have unveiled a plethora of new non-coding RNA biotypes. This review covers antisense long non-coding RNAs, i.e., lncRNAs transcribed from the opposite strand of other known genes, and their role in hepatocellular carcinoma (HCC). Several sense-antisense transcript pairs have been recently annotated, especially from mammalian genomes, and an understanding of their evolutionary sense and functional role for human health and diseases is only beginning. Antisense lncRNAs dysregulation is significantly involved in hepatocarcinogenesis, where they can act as oncogenes or oncosuppressors, thus playing a key role in tumor onset, progression, and chemoradiotherapy response, as deduced from many studies discussed here. Mechanistically, antisense lncRNAs regulate gene expression by exploiting various molecular mechanisms shared with other ncRNA molecules, and exploit special mechanisms on their corresponding sense gene due to sequence complementarity, thus exerting epigenetic, transcriptional, post-transcriptional, and translational controls. The next challenges will be piecing together the complex RNA regulatory networks driven by antisense lncRNAs and, ultimately, assigning them a function in physiological and pathological contexts, in addition to defining prospective novel therapeutic targets and innovative diagnostic tools.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Animales , Humanos , Carcinoma Hepatocelular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Hepáticas/metabolismo , Estudios Prospectivos , ARN no Traducido , ARN sin Sentido/genética , Mamíferos/metabolismo
6.
Curr Issues Mol Biol ; 44(10): 5106-5116, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36286061

RESUMEN

Given the increasing interest in bioactive dietary components that can modulate gene expression enhancing human health, three metabolites isolated from hemp seeds-cannabidiolic acid, N-trans-caffeoyltyramine, and cannabisin B-were examined for their ability to change the expression levels of microRNAs in human neural cells. To this end, cultured SH-SY5Y cells were treated with the three compounds and their microRNA content was characterized by next-generation small RNA sequencing. As a result, 31 microRNAs underwent major expression changes, being at least doubled or halved by the treatments. A computational analysis of the biological pathways affected by these microRNAs then showed that some are implicated in neural functions, such as axon guidance, hippocampal signaling, and neurotrophin signaling. Of these, miR-708-5p, miR-181a-5p, miR-190a-5p, miR-199a-5p, and miR-143-3p are known to be involved in Alzheimer's disease and their expression changes are expected to ameliorate neural function. Overall, these results provide new insights into the mechanism of action of hemp seed metabolites and encourage further studies to gain a better understanding of their biological effects on the central nervous system.

7.
Int J Biol Sci ; 18(13): 5136-5153, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982890

RESUMEN

CircRNA cargo in spermatozoa (SPZ) participates in setting cell quality, in terms of morphology and motility. Cannabinoid receptor CB1 activity is correlated with a proper spermatogenesis and epididymal sperm maturation. Despite CB1 promotes endogenous skill to circularize mRNAs in SPZ, few notions are reported regarding the functional link between endocannabinoids and spermatic circRNA cargo. In CB1 knock-out male mice, we performed a complete dataset of spermatic circRNA content by microarray strategy. Differentially expressed (DE)-circRNAs, as a function of genotype, were identified. Within DE-circRNAs, we focused the attention on circLIMA1, as putative actin-cytoskeleton architecture regulator. The validation of circLIMA1 dependent-competitive endogenous RNA (ceRNA) network (ceRNET) in in vitro cell line confirmed its activity in the regulation of the cytoskeletal actin. Interestingly, a dynamic actin regulation in SPZ nuclei was found during their epididymal maturation. In this scenario, we showed for the first time an intriguing sperm nuclear actin remodeling, regulated via a ceRNET-independent pathway, consisting in the nuclear shuttling of circLIMA1-QKI interactome and downstream in Gelsolin regulation. In particular, the increased levels of circLIMA1 in CB1 knock-out SPZ, associated with an inefficient depolymerization of nuclear actin, specifically illustrate how endocannabinoids, by regulating circRNA cargo, may contribute to sperm morpho-cellular maturation.


Asunto(s)
Actinas , ARN Circular , Actinas/genética , Actinas/metabolismo , Animales , Endocannabinoides/metabolismo , Masculino , Ratones , Semen/metabolismo , Espermatozoides/metabolismo
8.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054794

RESUMEN

Non-coding RNAs (ncRNAs) constitute the majority of the transcriptome, as the result of pervasive transcription of the mammalian genome. Different RNA species, such as lncRNAs, miRNAs, circRNA, mRNAs, engage in regulatory networks based on their reciprocal interactions, often in a competitive manner, in a way denominated "competing endogenous RNA (ceRNA) networks" ("ceRNET"): miRNAs and other ncRNAs modulate each other, since miRNAs can regulate the expression of lncRNAs, which in turn regulate miRNAs, titrating their availability and thus competing with the binding to other RNA targets. The unbalancing of any network component can derail the entire regulatory circuit acting as a driving force for human diseases, thus assigning "new" functions to "old" molecules. This is the case of XIST, the lncRNA characterized in the early 1990s and well known as the essential molecule for X chromosome inactivation in mammalian females, thus preventing an imbalance of X-linked gene expression between females and males. Currently, literature concerning XIST biology is becoming dominated by miRNA associations and they are also gaining prominence for other lncRNAs produced by the X-inactivation center. This review discusses the available literature to explore possible novel functions related to ceRNA activity of lncRNAs produced by the X-inactivation center, beyond their role in dosage compensation, with prospective implications for emerging gender-biased functions and pathological mechanisms.


Asunto(s)
Compensación de Dosificación (Genética) , ARN Largo no Codificante/metabolismo , Inactivación del Cromosoma X/genética , Aneuploidia , Animales , Femenino , Humanos , Masculino , Modelos Biológicos , ARN Largo no Codificante/genética , Síndrome
9.
Molecules ; 26(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071597

RESUMEN

In the search of new natural products to be explored as possible anticancer drugs, two plant species, namely Ononis diffusa and Ononis variegata, were screened against colorectal cancer cell lines. The cytotoxic activity of the crude extracts was tested on a panel of colon cancer cell models including cetuximab-sensitive (Caco-2, GEO, SW48), intrinsic (HT-29 and HCT-116), and acquired (GEO-CR, SW48-CR) cetuximab-resistant cell lines. Ononis diffusa showed remarkable cytotoxic activity, especially on the cetuximab-resistant cell lines. The active extract composition was determined by NMR analysis. Given its complexity, a partial purification was then carried out. The fractions obtained were again tested for their biological activity and their metabolite content was determined by 1D and 2D NMR analysis. The study led to the identification of a fraction enriched in oxylipins that showed a 92% growth inhibition of the HT-29 cell line at a concentration of 50 µg/mL.


Asunto(s)
Cetuximab/farmacología , Neoplasias del Colon/tratamiento farmacológico , Resistencia a Antineoplásicos , Espectroscopía de Resonancia Magnética/métodos , Ononis/metabolismo , Extractos Vegetales/farmacología , Células CACO-2 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/tratamiento farmacológico , Diseño de Fármacos , Células HCT116 , Células HT29 , Humanos , Oxilipinas/química , Fitoterapia/métodos , Especificidad de la Especie
10.
Front Genet ; 12: 678994, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163530

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel RNA virus affecting humans, causing a form of acute pulmonary respiratory disorder named COVID-19, declared a pandemic by the World Health Organization. MicroRNAs (miRNA) play an emerging and important role in the interplay between viruses and host cells. Although the impact of host miRNAs on SARS-CoV-2 infection has been predicted, experimental data are still missing. This study started by a bioinformatics prediction of cellular miRNAs potentially targeting viral RNAs; then, a number of criteria also based on experimental evidence and virus biology were applied, giving rise to eight promising binding miRNAs. Their interaction with viral sequences was experimentally validated by transfecting luciferase-based reporter plasmids carrying viral target sequences or their inverted sequences into the lung A549 cell line. Transfection of the reporter plasmids resulted in a reduction of luciferase activity for five out of the eight potential binding sites, suggesting responsiveness to endogenously expressed miRNAs. Co-transfection of the reporter plasmids along with miRNA mimics led to a further and strong reduction of luciferase activity, validating the interaction between miR-219a-2-3p, miR-30c-5p, miR-378d, miR-29a-3p, miR-15b-5p, and viral sequences. miR-15b was also able to repress plasmid-driven Spike expression. Intriguingly, the viral target sequences are fully conserved in more recent variants such as United Kingdom variant B.1.1.7 and South Africa 501Y.V2. Overall, this study provides a first experimental evidence of the interaction between specific cellular miRNAs and SARS-CoV-2 sequences, thus contributing to understanding the molecular mechanisms underlying virus infection and pathogenesis to envisage innovative therapeutic interventions and diagnostic tools.

11.
Cell Biol Int ; 45(8): 1797-1803, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33818827

RESUMEN

Colorectal cancer (CRC) is the second leading cause of death of malignant tumors worldwide. Recent studies point to a role for the adiponectin-receptor axis in colorectal carcinogenesis, and in particular to the oncosuppressive properties of the T-cadherin receptor. In addition, the loss of T-cadherin expression in tumor tissues has been linked to cancer progression and attributed to aberrant methylation of its promoter. Recognizing the pivotal role of microRNAs in CRC, this study explores their possible contribution to the downregulation of T-cadherin. A systematic bioinformatics analysis, restricted by microRNA expression data in the colon or in cultured colorectal cell lines, predicted twelve top-ranking target miRNA sites within the 3' UTR of T-cadherin. Experimental validation analyses based on luciferase reporter constructs and miRNA mimic or miRNA inhibitor transfections toward colorectal adenocarcinoma cell lines indicated that miR-377-3p was able to directly bind to the T-cadherin sequence, and thus downregulating its expression. Given the oncogenic activity of miR-377 and the oncosuppressive activity of T-cadherin in CRC, the regulatory circuit highlighted in this study may add new insights into molecular mechanisms driving colorectal carcinogenesis, and perspectively it could be exploited to identify novel biomarkers and therapeutic targets.


Asunto(s)
Cadherinas/metabolismo , Neoplasias Colorrectales/metabolismo , Regulación hacia Abajo/fisiología , Genes Supresores de Tumor/fisiología , MicroARNs/metabolismo , Células CACO-2 , Cadherinas/antagonistas & inhibidores , Cadherinas/genética , Neoplasias Colorrectales/genética , Células HT29 , Humanos , MicroARNs/genética
13.
Int J Mol Sci ; 21(14)2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32709089

RESUMEN

MicroRNAs (miRNA), and more recently long non-coding RNAs (lncRNA), are emerging as a driving force for hepatocellular carcinoma (HCC), one of the leading causes of cancer-related death. In this work, we investigated a possible RNA regulatory network involving two oncosuppressive miRNAs, miR-125a and let-7e, and a long non-coding antisense RNA, SPACA6P-AS (SP-AS), all transcribed from the same locus, with SP-AS in the opposite direction and thus carrying complementary sequences to the miRNAs. In vitro experiments validated the binding of the miRNAs to SP-AS. Then, the boosting of either the miRNAs or SP-AS levels demonstrated their reciprocal inhibition. In addition, overexpression of SP-AS resulted in a reduced silencing activity of miR-125a and let-7e toward their key oncogenic targets, i.e., Lin28b, MMP11, SIRT7, Zbtb7a, Cyclin D1, CDC25B, HMGA2, that resulted significantly upregulated. Finally, the analysis of 374 HCC samples in comparison to 50 normal liver tissues showed an upregulation of SP-AS and a reverse expression of miR-125a, not observed for let-7e; consistently, miR-125a oncogenic targets were upregulated. Overall, the data depict a novel competing endogenous RNA (ceRNA) network, ceRNET, whereby miR-125a can regulate the expression of SP-AS, which in turn regulates the miRNA by competing with the binding to the mRNA targets. We speculate that the unbalancing of any network component may contribute to hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Humanos
14.
Cell Mol Life Sci ; 77(20): 4069-4080, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32356180

RESUMEN

MicroRNAs (miRNA) are small-non coding RNAs endowed with great regulatory power, thus playing key roles not only in almost all physiological pathways, but also in the pathogenesis of several diseases. Surprisingly, genomic distribution analysis revealed the highest density of miRNA sequences on the X chromosome; this evolutionary conserved mammalian feature equips females with a larger miRNA machinery than males. However, miRNAs contribution to some X-related conditions, properties or functions is still poorly explored. With the aim to support and focus research in the field, this review analyzes the literature and databases about X-linked miRNAs, trying to understand how miRNAs could contribute to emerging gender-biased functions and pathological mechanisms, such as immunity and cancer. A fine map of miRNA sequences on the X chromosome is reported, and their known functions are discussed; in addition, bioinformatics functional analyses of the whole X-linked miRNA targetome (predicted and validated) were performed. The emerging scenario points to different gaps in the knowledge that should be filled with future experimental investigations, also in terms of possible implications and pathological perspectives for X chromosome aneuploidy syndromes, such as Turner and Klinefelter syndromes.


Asunto(s)
Cromosomas Humanos X/genética , MicroARNs/genética , Animales , Biología Computacional/métodos , Humanos , Síndrome de Klinefelter/genética , Neoplasias/genética , Síndrome de Turner/genética
15.
Mol Biol Rep ; 47(6): 4875-4878, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32410140

RESUMEN

Zbtb7a is a transcription factor whose dysfunction is correlated to the development of several types of cancer, including hepatocellular carcinoma (HCC). It generally acts as a repressor of transcription downregulating the expression of several target genes including oncosuppressors ARF and Rb. In this study, Zbtb7a was found to suppress the expression of miR-125a, an oncosuppressive miRNA that is often downregulated in HCC. This effect is mediated by the binding of the transcription factor to a regulatory sequence in the promoter of the transcription unit of miR-125a located 14 bp upstream of the transcription start site. Consistent with this observation, the analysis of 370 HCC samples showed an upregulation of Zbtb7a compared to 50 normal liver tissues and a reverse correlation with miR-125a expression. These data suggest that miR-125a may support the oncogenic potential of Zbtb7a.


Asunto(s)
Carcinoma Hepatocelular/genética , Proteínas de Unión al ADN/genética , MicroARNs/genética , Factores de Transcripción/genética , Línea Celular Tumoral , Proliferación Celular/genética , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/genética , MicroARNs/metabolismo , Proto-Oncogenes Mas , Proto-Oncogenes/genética , Factores de Transcripción/metabolismo
16.
Sci Rep ; 9(1): 16645, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719576

RESUMEN

The 3,5-diiodo-L-thyronine (T2) has emerged as an active iodothyronine and its beneficial effects on glucose metabolism including glucose tolerance and insulin resistance is well established. However, little is known about its molecular mechanisms. Given the emerging importance of microRNAs in various metabolic diseases, in this study a possible link between the effects of T2 on glucose metabolism and miRNA expression was investigated by using an in vivo model in which T2 was administered in rats receiving a high fat diet, a condition known to impair glucose homeostasis. The results showed that T2-treated rats had a better tolerance to glucose load and a better performance at the insulin tolerance test in comparison to high fat diet animals. Interestingly, in the serum of the animals treated with T2 there was a general decrease of miRNAs with miR-22a-3p, miR-34c-5p and miR-33a-3p significantly downregulated. Furthermore, miR-22a-3p had the largest variation pointing toward its preeminent role in T2 metabolic effect. In fact, in liver there was an up-regulation of its target (Transcription Factor 7) Tcf7, which had an important impact on gluconeogenesis. This study provide, for the first time, evidences that miRNAs are involved in the effects exerted by T2 on glucose homeostasis.


Asunto(s)
Diyodotironinas/farmacología , Gluconeogénesis/efectos de los fármacos , MicroARNs/fisiología , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Masculino , Redes y Vías Metabólicas/efectos de los fármacos , MicroARNs/metabolismo , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa
17.
Int J Mol Sci ; 20(9)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058823

RESUMEN

Silybin is a flavonolignan extracted from Silybum marianum (milk thistle) with hepatoprotective, antioxidant, and anti-inflammatory activity. Several studies have shown that silybin is highly effective to prevent and treat different types of cancer and that its antitumor mechanisms involve the arrest of the cell cycle and/or apoptosis. An MTT assay was performed to study cell viability, lipid peroxidation, extracellular NO production, and scavenger enzyme activity were studied by Thiobarbituric Acid-Reactive Species (TBARS) assay, NO assay, and MnSOD assay, respectively. Cell cycle and apoptosis analysis were performed by FACS. miRNA profiling were evaluated by real time PCR. In this study, we demonstrated that Silybin induced growth inhibition blocking the Hepg2 cells in G1 phase of cell cycle and activating the process of programmed cell death. Moreover, the antiproliferative effects of silybin were paralleled by a strong increase of the number of ceramides involved in the modulation of miRNA secretion. In particular, after treatment with silybin, miR223-3p and miR16-5p were upregulated, while miR-92-3p was downregulated (p < 0.05). In conclusion, our results suggest that silybin-Induced apoptosis occurs in parallel to the increase of ceramides synthesis and miRNAs secretion in HepG2 cells.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Ceramidas/biosíntesis , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Silibina/farmacología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Perfilación de la Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Óxido Nítrico/biosíntesis
18.
Molecules ; 24(9)2019 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-31058835

RESUMEN

In several European countries, especially in Sweden, the seeds of the species Astragalus boeticus L. were widely used as coffee substitutes during the 19th century. Nonetheless, data regarding the phytochemistry and the pharmacological properties of this species are currently extremely limited. Conversely, other species belonging to the Astragalus genus have already been extensively investigated, as they were used for millennia for treating various diseases, including cancer. The current work was addressed to characterize cycloartane glycosides from A. boeticus, and to evaluate their cytotoxicity towards human colorectal cancer (CRC) cell lines. The isolation of the metabolites was performed by using different chromatographic techniques, while their chemical structures were elucidated by nuclear magnetic resonance (NMR) (1D and 2D techniques) and electrospray-ionization quadrupole time-of-flight (ESI-QTOF) mass spectrometry. The cytotoxic assessment was performed in vitro by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in Caco-2, HT-29 and HCT-116 CRC cells. As a result, the targeted phytochemical study of A. boeticus enabled the isolation of three new cycloartane glycosides, 6-O-acetyl-3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (1), 3-O-(4-O-malonyl)-ß-d-xylopyranosylcycloastragenol (2), 6-O-acetyl-25-O-ß-d-glucopyranosyl-3-O-ß-d-xylopyranosylcycloastragenol (3) along with two known compounds, 6-O-acetyl-3-O-ß-d-xylopyranosylcycloastragenol (4) and 3-O-ß-d-xylopyranosylcycloastragenol (5). Importantly, this work demonstrated that the acetylated cycloartane glycosides 1 and 4 might preferentially inhibit cell growth in the CRC cell model resistant to epidermal growth factor receptor (EGFR) inhibitors.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Planta del Astrágalo/química , Resistencia a Antineoplásicos/efectos de los fármacos , Glicósidos/farmacología , Triterpenos/química , Acilación , Antineoplásicos Fitogénicos/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glicósidos/química , Células HCT116 , Células HT29 , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Extractos Vegetales/química , Espectrometría de Masa por Ionización de Electrospray , Suecia
19.
Sci Rep ; 9(1): 4986, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899059

RESUMEN

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the ineffectiveness of the current therapies seriously limits the survival rate of NSCLC patients. In the search for new antitumor agents, nature has played a pivotal role providing a variety of molecules, which are likely to exert selective anti-tumour properties. Herein, we investigated the antiproliferative potential of Urtica dioica L. extract (UD) against NSCLC cell models with low sensitivity to cisplatin, a cytotoxic agent largely employed to cure NSCLCs. UD inhibited cell proliferation in the selected cells, while no toxic effects were observed in normal lung cells. Furthermore, the co-treatment of UD and cisplatin notably sensitised NSCLC cells to cisplatin. Mechanistically, we discovered that UD-promoted endoplasmic reticulum (ER) stress via activation of the growth arrest and DNA damage-inducible gene 153 (GADD153) triggering apoptosis. We also performed an extensive NMR analysis of UD, identifying rutin and oxylipins as the main secondary metabolites present in the mixture. Additionally, we discovered that an oxylipins' enriched fraction contributes to the antiproliferative activity of the plant extract. In the future, this study may provide new chemical scaffolds for the design of anti-cancer agents that target NSCLCs with low sensitivity to cisplatinum.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Cisplatino/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Neoplasias Pulmonares/patología , Urtica dioica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Oxilipinas/farmacología , Extractos Vegetales/farmacología , Espectroscopía de Protones por Resonancia Magnética , Rutina/farmacología
20.
Microrna ; 8(3): 173-179, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30394225

RESUMEN

BACKGROUND: MicroRNA-125a is present in all animals with bilateral symmetry and displays a conserved nucleotide sequence with a section of 11 bases including the seed region that is identical in all considered species. It primarily downregulates the expression of LIN28, thereby promoting cell differentiation and larval phase transitions in nematodes, mammals and insects. OBJECTIVE: In this review, we focus on the cellular control of miR-125a expression and its antiproliferative activity. RESULTS: In mammalians, microRNA-125a is present in most adult organs and tissues in which it targets proteins involved in the mitogenic response, such as membrane receptors, intracellular signal transducers, or transcription factors, with the overall effect of inhibiting cell proliferation. Tissue levels of miR-125a generally raise during differentiation but it is often downregulated in cancers, e.g. colon, cervical, gastric, ovarian, lung, and breast cancers, osteosarcoma, neuroblastoma, glioblastoma, medulloblastoma, retinoblastoma and hepatocellular carcinoma. CONCLUSION: The antiproliferative activity of miR-125a, demonstrated in many cell types, together with the notion that this miRNA is downregulated in several kinds of cancers, give a substantial support to the concept that miR-125a plays an oncosuppressive role.


Asunto(s)
Proliferación Celular/genética , MicroARNs/metabolismo , Animales , Humanos , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA