Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Med Phys ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976841

RESUMEN

BACKGROUND: Radiobiological effectiveness of radiation in cancer treatment can be studied at different scales (molecular till organ scale) and different time post irradiation. The production of free radicals and reactive oxygen species during water radiolysis is particularly relevant to understand the fundamental mechanisms playing a role in observed biological outcomes. The development and validation of Monte Carlo tools integrating the simulation of physical, physico-chemical and chemical stages after radiation is very important to maintain with experiments. PURPOSE: Therefore, in this study, we propose to validate a new Geant4-DNA chemistry module through the simulation of water radiolysis and Fricke dosimetry experiments on a proton preclinical beam line. MATERIAL AND METHODS: In this study, we used the GATE Monte Carlo simulation platform (version 9.3) to simulate a 67.5 MeV proton beam produced with the ARRONAX isochronous cyclotron (IBA Cyclone 70XP) at conventional dose rate (0.2 Gy/s) to simulate the irradiation of ultra-pure liquid water samples and Fricke dosimeter. We compared the depth dose profile with measurements performed with a plane parallel Advanced PTW 34045 Markus ionization chamber. Then, a new Geant4-DNA chemistry application proposed from Geant4 version 11.2 has been used to assess the evolution of HO • ${\mathrm{HO}}^ \bullet $ , e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ , H 3 O + ${{\mathrm{H}}}_3{{\mathrm{O}}}^ + $ , H 2 O 2 ${{\mathrm{H}}}_2{{\mathrm{O}}}_2$ , H 2 ${{\mathrm{H}}}_2$ , HO 2 • ${\mathrm{HO}}_2^ \bullet $ , HO 2 - , O 2 • - ${\mathrm{HO}}_2^ - ,{\mathrm{\ O}}_2^{ \bullet - }$ and HO - ${\mathrm{HO}}^ - $ reactive species along time until 1-h post-irradiation. In particular, the effect of oxygen and pH has been investigated through comparisons with experimental measurements of radiolytic yields for H 2 O 2 ${{\mathrm{H}}}_2{{\mathrm{O}}}_2$ and Fe3+. RESULTS: GATE simulations reproduced, within 4%, the depth dose profile in liquid water. With Geant4-DNA, we were able to reproduce experimental H 2 O 2 ${{\mathrm{H}}}_2{{\mathrm{O}}}_2$ radiolytic yields 1-h post-irradiation in aerated and deaerated conditions, showing the impact of small changes in oxygen concentrations on species evolution along time. For the Fricke dosimeter, simulated G(Fe3+) is 15.97 ± 0.2 molecules/100 eV which is 11% higher than the measured value (14.4 ± 04 molecules/100 eV). CONCLUSIONS: These results aim to be consolidated by new comparisons involving other radiolytic species, such as e aq - ${\mathrm{e}}_{{\mathrm{aq}}}^ - $ or , O 2 • - $,{\mathrm{\ O}}_2^{ \bullet - }$ to further study the mechanisms underlying the FLASH effect observed at ultra-high dose rates (UHDR).

2.
Phys Med ; 120: 103332, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518627

RESUMEN

As part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivodosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation andin vivodosimetry.


Asunto(s)
Terapia de Protones , Radioterapia Conformacional , Humanos , Ratones , Animales , Protones , Terapia de Protones/métodos , Pulmón , Fantasmas de Imagen , Método de Montecarlo , Carmustina , Etopósido , Dosificación Radioterapéutica
3.
Radiother Oncol ; 187: 109820, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37516363

RESUMEN

The ability to reduce toxicity of ultra-high dose rate (UHDR) helium ion irradiation has not been reported in vivo. Here, we tested UHDR helium ion irradiation in an embryonic zebrafish model. Our results show that UHDR helium ions spare body development and reduce spine curvature, compared to conventional dose rate.


Asunto(s)
Helio , Pez Cebra , Animales , Helio/uso terapéutico , Planificación de la Radioterapia Asistida por Computador/métodos , Iones/uso terapéutico , Dosificación Radioterapéutica
4.
Adv Radiat Oncol ; 8(2): 101124, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36578276

RESUMEN

Purpose: Recently, ultrahigh-dose-rate radiation therapy (UHDR-RT) has emerged as a promising strategy to increase the benefit/risk ratio of external RT. Extensive work is on the way to characterize the physical and biological parameters that control the so-called "Flash" effect. However, this healthy/tumor differential effect is observable in in vivo models, which thereby drastically limits the amount of work that is achievable in a timely manner. Methods and Materials: In this study, zebrafish embryos were used to compare the effect of UHDR irradiation (8-9 kGy/s) to conventional RT dose rate (0.2 Gy/s) with a 68 MeV proton beam. Viability, body length, spine curvature, and pericardial edema were measured 4 days postirradiation. Results: We show that body length is significantly greater after UHDR-RT compared with conventional RT by 180 µm at 30 Gy and 90 µm at 40 Gy, while pericardial edema is only reduced at 30 Gy. No differences were obtained in terms of survival or spine curvature. Conclusions: Zebrafish embryo length appears as a robust endpoint, and we anticipate that this model will substantially fasten the study of UHDR proton-beam parameters necessary for "Flash."

5.
Bull Cancer ; 109(10): 1088-1093, 2022 Oct.
Artículo en Francés | MEDLINE | ID: mdl-35908990

RESUMEN

The fourteenth edition of the workshop covered the latest advances in internal and external radiotherapy obtained through a better understanding of the adaptive capacity of the tumor and its microenvironment, from different disciplinary angles, chemistry, biology, physics, and medicine, paving the way for numerous technological innovations. The biological aspects and the contribution of imaging in monitoring and understanding the adaptation of tumors to radiotherapy were presented, before focusing on innovative radiotherapy strategies and machine learning and data-driven techniques. Finally, the challenges were explored in the radiobiology of targeted radionuclide therapy as well as data science and machine learning in radiomics.


Asunto(s)
Neoplasias , Oncología por Radiación , Diagnóstico por Imagen , Ecosistema , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Radioisótopos , Microambiente Tumoral
6.
Radiat Res ; 198(3): 318-324, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35675499

RESUMEN

During ultra-high dose rate (UHDR) external radiation therapy, healthy tissues appear to be spared while tumor control remains the same compared to conventional dose rate. However, the understanding of radiochemical and biological mechanisms involved are still to be discussed. This study shows how the hydrogen peroxide (H2O2) production, one of the reactive oxygen species (ROS), could be controlled by early heterogenous radiolysis processes in water during UHDR proton-beam irradiations. Pure water was irradiated in the plateau region (track-segment) with 68 MeV protons under conventional (0.2 Gy/s) and several UHDR conditions (40 Gy/s to 60 kGy/s) at the ARRONAX cyclotron. Production of H2O2 was then monitored using the Ghormley triiodide method. New values of GTS(H2O2) were added in conventional dose rate. A substantial decrease in H2O2 production was observed from 0.2 to 1.5 kGy/s with a more dramatic decrease below 100 Gy/ s. At higher dose rate, up to 60 kGy/s, the H2O2 production stayed stable with a mean decrease of 38% ± 4%. This finding, associated to the decrease in the production of hydroxyl radical (•OH) already observed in other studies in similar conditions can be explained by the well-known spur theory in radiation chemistry. Thus, a two-step FLASH-RT mechanism can be envisioned: an early step at the microsecond scale mainly controlled by heterogenous radiolysis, and a second, slower, dominated by O2 depletion and biochemical processes. To validate this hypothesis, more measurements of radiolytic species will soon be performed, including radicals and associated lifetimes.


Asunto(s)
Peróxido de Hidrógeno , Protones , Radical Hidroxilo , Radioquímica , Agua
7.
Am J Cancer Res ; 12(4): 1843-1854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530297

RESUMEN

Predicting a response of osteosarcoma patients to chemotherapy, such as doxorubicin or high-dose methotrexate cocktail, remains a challenge in the clinic. Moreover, the prognostic value of currently used necrosis analysis is debatable. New markers of the therapeutic response or the prognostic response are urgently needed. The microenvironment plays a key role in the vascularization of highly heterogeneous tumors. Using the syngeneic MOS-J mouse model of osteosarcoma, we focused our study on the immunohistochemistry of tumor vascularization in order to identify new vessel markers, and to search for potential markers of the therapeutic response. Endomucin+, CD31+, and α-SMA+-positive elements were quantified in control (n=6) and doxorubicin-treated (n=6) mice in three different intra-tumor locations. We also used co-labeling to assess CD31+/Endomucin+ and CD31+/α-SMA+ co-expression. We identified a central tumor zone with a low vascularization profile for all of these markers. We identified two distinct types of vessels: CD31+/Endomucin+ vessels with a sprouting, neo-angiogenic, interlaced appearance, and CD31+/α-SMA+ vessel with a well-defined, mature structure. Doxorubicin appeared to reduce CD31+ expression in the tumor invasion front. In the doxorubicin-sensitive model, there were four times more CD31+/α-SMA+ elements than in the poorly responsive model. Therefore, we propose a methodology based on immunohistochemistry and multiplexed immunofluorescence to use endomucin as a promising new vascular marker in the osteosarcoma model. Moreover, our results suggest that CD31+/α-SMA+ vessels could be considered to be indicators of vasculature normalization and they may be used as specific markers of a good therapeutic response.

8.
Med Phys ; 49(4): 2732-2745, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35179234

RESUMEN

PURPOSE: The ARRONAX cyclotron facility offers the possibility to deliver proton beams from low to ultra-high dose rates (UHDR). As a good control of the dosimetry is a prerequisite of UHDR experimentations, we evaluated in different conditions the usability and the dose rate dependency of several radiochromic films commonly used for dosimetry in radiotherapy. METHODS: We compared the dose rate dependency of three types of radiochromic films: GAFchromic™ EBT3 and GAFchromic™ EBT-XD (Ashland Inc., Wayne, NJ, USA), and OrthoChromic OC-1 (OrthoChrome Inc., Hillsborough, NJ, USA), after proton irradiations at various mean dose rates (0.25, 40, 1500, and 7500 Gy/s) and for 10 doses (2-130 Gy). We also evaluated the dose rate dependency of each film considering beam structures, from single pulse to multiple pulses with various frequencies. RESULTS: EBT3 and EBT-XD films showed differences of response between conventional (0.25 Gy/s) and UHDR (7500 Gy/s) conditions, above 10 Gy. On the contrary, OC-1 films did not present overall difference of response for doses except below 3 Gy. We observed an increase of the netOD with the mean dose rate for EBT3 and EBT-XD films. OC-1 films did not show any impact of the mean dose rate up to 7500 Gy/s, above 3 Gy. No difference was found based on the beam structure, for all three types of films. CONCLUSIONS: EBT3 and EBT-XD radiochromic films should be used with caution for the dosimetry of UHDR proton beams over 10 Gy. Their overresponse, which increases with mean dose rate and dose, could lead to non-negligible overestimations of the absolute dose. OC-1 films are dose rate independent up to 7500 Gy/s in proton beams. Films response is not impacted by the beam structure. A broader investigation of the usability of OC-1 films in UHDR conditions should be conducted at intermediate and higher mean dose rates and other beam energies.


Asunto(s)
Dosimetría por Película , Terapia de Protones , Calibración , Protones , Radiometría
9.
Cancers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771565

RESUMEN

Physical activity is increasingly recognized as a strategy able to improve cancer patient outcome, and its potential to enhance treatment response is promising, despite being unclear. In our study we used a preclinical model of prostate cancer to investigate whether voluntary wheel running (VWR) could improve tumor perfusion and enhance radiotherapy (RT) efficiency. Nude athymic mice were injected with PC-3 cancer cells and either remained inactive or were housed with running wheels. Apparent microbubble transport was enhanced with VWR, which we hypothesized could improve the RT response. When repeating the experiments and adding RT, however, we observed that VWR did not influence RT efficiency. These findings contrasted with previous results and prompted us to evaluate if the lack of effects observed on tumor growth could be attributable to the physical activity modality used. Using PC-3 and PPC-1 xenografts, we randomized mice to either inactive controls, VWR, or treadmill running (TR). In both models, TR (but not VWR) slowed down tumor growth, suggesting that the anti-cancer effects of physical activity are dependent on its modalities. Providing a better understanding of which activity type should be recommended to cancer patients thus appears essential to improve treatment outcomes.

10.
Front Oncol ; 11: 744679, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595122

RESUMEN

Prostate cancer is the most frequently diagnosed cancer in men and a leading cause of cancer-related death. In recent decades, the development of immunotherapies has resulted in great promise to cure metastatic disease. However, prostate cancer has failed to show any significant response, presumably due to its immunosuppressive microenvironment. There is therefore growing interest in combining immunotherapy with other therapies able to relieve the immunosuppressive microenvironment. Radiation therapy remains the mainstay treatment for prostate cancer patients, is known to exhibit immunomodulatory effects, depending on the dose, and is a potent inducer of immunogenic tumor cell death. Optimal doses of radiotherapy are thus expected to unleash the full potential of immunotherapy, improving primary target destruction with further hope of inducing immune-cell-mediated elimination of metastases at distance from the irradiated site. In this review, we summarize the current knowledge on both the tumor immune microenvironment in prostate cancer and the effects of radiotherapy on it, as well as on the use of immunotherapy. In addition, we discuss the utility to combine immunotherapy and radiotherapy to treat oligometastatic metastatic prostate cancer.

11.
Cancers (Basel) ; 13(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33920758

RESUMEN

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose-response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose-response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.

12.
Mol Cancer ; 19(1): 63, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32293453

RESUMEN

As the most frequently diagnosed non-skin cancer in men and a leading cause of cancer-related death, understanding the molecular mechanisms that drive treatment resistance in prostate cancer poses a significant clinical need. Radiotherapy is one of the most widely used treatments for prostate cancer, along with surgery, hormone therapy, and chemotherapy. However, inherent radioresistance of tumor cells can reduce local control and ultimately lead to poor patient outcomes, such as recurrence, metastasis and death. The underlying mechanisms of radioresistance have not been fully elucidated, but it has been suggested that miRNAs play a critical role. miRNAs are small non-coding RNAs that regulate gene expression in every signaling pathway of the cell, with one miRNA often having multiple targets. By fine-tuning gene expression, miRNAs are important players in modulating DNA damage response, cell death, tumor aggression and the tumor microenvironment, and can ultimately affect a tumor's response to radiotherapy. Furthermore, much interest has focused on miRNAs found in biofluids and their potential utility in various clinical applications. In this review, we summarize the current knowledge on miRNA deregulation after irradiation and the associated functional outcomes, with a focus on prostate cancer. In addition, we discuss the utility of circulating miRNAs as non-invasive biomarkers to diagnose, predict response to treatment, and prognosticate patient outcomes.


Asunto(s)
Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , MicroARNs/genética , Neoplasias de la Próstata/patología , Radiación Ionizante , Animales , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/radioterapia
13.
Epigenomics ; 12(5): 397-408, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32267172

RESUMEN

Aim: We here hypothesized that tumor-derived exosomal miRNA (TexomiR) released from irradiated tumors may play a role in the tumor cells escape to natural killer (NK) cells. Materials & methods: Our study included the use of different cancer cell lines, blood biopsies of xenograph mice model and patients treated with radiotherapy. Results: The irradiation of cancer cells promotes the TET2-mediated demethylation of miR-378 promoter, miR-378a-3p overexpression and its loading in exosomes, inducing the decrease of granzyme-B (GZMB) secretion by NK cells. An inverse correlation between TexomiR-378a-3p and GZMB was observed in murine and human blood samples. Conclusion: Our work identifies TexomiR-378a-3p as a molecular signature associated with the loss of NK cells cytotoxicity via the decrease of GZMB expression upon radiotherapy.


Asunto(s)
Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , MicroARNs/genética , Animales , Línea Celular Tumoral , Citotoxicidad Inmunológica/genética , Citotoxicidad Inmunológica/efectos de la radiación , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Dioxigenasas , Expresión Génica , Granzimas/metabolismo , Humanos , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas/metabolismo , Radioterapia
14.
Cancers (Basel) ; 12(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906502

RESUMEN

Background. The tumor vasculature acts as an interface for the primary tumor. It regulates oxygenation, nutrient delivery, and treatment efficacy including radiotherapy. The response of the tumor vasculature to different radiation doses has been disparately reported. Whereas high single doses can induce endothelial cell death, improved vascular functionality has also been described in a various dose range, and few attempts have been made to reconcile these findings. Therefore, we aimed at comparing the effects of different radiation fractionation regimens on the tumor vascular microenvironment. METHODS: Lewis lung and prostate PC3 carcinoma-derived tumors were irradiated with regimens of 10 × 2 Gy, 6 × 4 Gy, 3 × 8 Gy or 2 × 12 Gy fractions. The tumor vasculature phenotype and function was evaluated by immunohistochemistry for endothelial cells (CD31), pericytes (desmin, α-SMA), hypoxia (pimonidazole) and perfusion (Hoechst 33342). RESULTS: Radiotherapy increased vascular coverage similarly in all fractionation regimens in both models. Vessel density appeared unaffected. In PC3 tumors, hypoxia was decreased and perfusion was enhanced in proportion with the dose per fraction. In LLC tumors, no functional changes were observed at t = 15 days, but increased perfusion was noticed earlier (t = 9-11 days). CONCLUSION: The vascular microenvironment response of prostate and lung cancers to radiotherapy consists of both tumor/dose-independent vascular maturation and tumor-dependent functional parameters.

15.
Cancer Lett ; 457: 1-9, 2019 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-31078733

RESUMEN

The tumor microenvironment regulates cancer initiation, progression and response to treatment. In particular, the immature tumor vasculature may impede drugs from reaching tumor cells at a lethal concentration. We and others have shown that radiation therapy (RT) induces pericyte recruitment, resembling vascular normalization. Here, we asked whether radiation-induced vascular remodeling translates into improved tissue distribution and efficacy of chemotherapy. First, RT induced vascular remodeling, accompanied by decreased hypoxia and/or increased Hoechst perfusion in prostate PC3 and LNCaP and Lewis lung carcinoma. These results were independent of the RT regimen, respectively 10 × 2 Gy and 2 × 12 Gy, suggesting a common effect. Next, using doxorubicin as a fluorescent reporter, we observed that RT improves intra-tumoral chemotherapy distribution. These effects were not hindered by anti-angiogenic sunitinib. Moreover, sub-optimal doses of doxorubicin had almost no effect alone, but significantly delayed tumor growth after RT. These data demonstrate that RT favors the efficacy of chemotherapy by improving tissue distribution, and could be an alternative chemosensitizing strategy.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Carcinoma Pulmonar de Lewis/irrigación sanguínea , Carcinoma Pulmonar de Lewis/terapia , Quimioradioterapia , Doxorrubicina/farmacología , Neoplasias de la Próstata/irrigación sanguínea , Neoplasias de la Próstata/terapia , Dosis de Radiación , Remodelación Vascular/efectos de la radiación , Animales , Antibióticos Antineoplásicos/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/patología , Doxorrubicina/metabolismo , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Desnudos , Neovascularización Patológica , Células PC-3 , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Distribución Tisular , Carga Tumoral/efectos de los fármacos , Carga Tumoral/efectos de la radiación , Hipoxia Tumoral , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Oncotarget ; 9(11): 10005-10015, 2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29515786

RESUMEN

PURPOSE: Hypoxia is a major factor in prostate cancer aggressiveness and radioresistance. Predicting which patients might be bad candidates for radiotherapy may help better personalize treatment decisions in intermediate-risk prostate cancer patients. We assessed spatial distribution of 18F-Misonidazole (FMISO) PET/CT uptake in the prostate prior to radiotherapy treatment. MATERIALS AND METHODS: Intermediate-risk prostate cancer patients about to receive high-dose (>74 Gy) radiotherapy to the prostate without hormonal treatment were prospectively recruited between 9/2012 and 10/2014. Prior to radiotherapy, all patients underwent a FMISO PET/CT as well as a MRI and 18F-choline-PET. 18F-choline and FMISO-positive volumes were semi-automatically determined using the fuzzy locally adaptive Bayesian (FLAB) method. In FMISO-positive patients, a dynamic analysis of early tumor uptake was performed. Group differences were assessed using the Wilcoxon signed rank test. Parameters were correlated using Spearman rank correlation. RESULTS: Of 27 patients (median age 76) recruited to the study, 7 and 9 patients were considered positive at 2.5h and 3.5h FMISO PET/CT respectively. Median SUVmax and SUVmax tumor to muscle (T/M) ratio were respectively 3.4 and 3.6 at 2.5h, and 3.2 and 4.4 at 3.5h. The median FMISO-positive volume was 1.1 ml. CONCLUSIONS: This is the first study regarding hypoxia imaging using FMISO in prostate cancer showing that a small FMISO-positive volume was detected in one third of intermediate-risk prostate cancer patients.

18.
Sci Rep ; 7(1): 2280, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28536438

RESUMEN

The concept of hypofractionation is gaining momentum in radiation oncology centres, enabled by recent advances in radiotherapy apparatus. The gain of efficacy of this innovative treatment must be defined. We present a computer model based on translational murine data for in silico testing and optimization of various radiotherapy protocols with respect to tumour resistance and the microenvironment heterogeneity. This model combines automata approaches with image processing algorithms to simulate the cellular response of tumours exposed to ionizing radiation, modelling the alteration of oxygen permeabilization in blood vessels against repeated doses, and introducing mitotic catastrophe (as opposed to arbitrary delayed cell-death) as a means of modelling radiation-induced cell death. Published data describing cell death in vitro as well as tumour oxygenation in vivo are used to inform parameters. Our model is validated by comparing simulations to in vivo data obtained from the radiation treatment of mice transplanted with human prostate tumours. We then predict the efficacy of untested hypofractionation protocols, hypothesizing that tumour control can be optimized by adjusting daily radiation dosage as a function of the degree of hypoxia in the tumour environment. Further biological refinement of this tool will permit the rapid development of more sophisticated strategies for radiotherapy.


Asunto(s)
Oxígeno/metabolismo , Neoplasias de la Próstata/radioterapia , Radioterapia/métodos , Ensayos Antitumor por Modelo de Xenoinjerto , Algoritmos , Animales , Muerte Celular/efectos de la radiación , Simulación por Computador , Difusión , Humanos , Masculino , Ratones , Modelos Biológicos , Células PC-3 , Neoplasias de la Próstata/patología , Carga Tumoral/efectos de la radiación
19.
Cancer Res ; 73(23): 7111-21, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24121493

RESUMEN

The epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET), are fundamental processes involved in tumor cell invasion and metastasis. SEMA3F is a secreted semaphorin and tumor suppressor downregulated by TGF-ß1 and ZEB1-induced EMT. Here, we report that neuropilin (NRP)-2, the high-affinity receptor for SEMA3F and a coreceptor for certain growth factors, is upregulated during TGF-ß1-driven EMT in lung cancer cells. Mechanistically, NRP2 upregulation was TßRI dependent and SMAD independent, occurring mainly at a posttranscriptional level involving increased association of mRNA with polyribosomes. Extracellular signal-regulated kinase (ERK) and AKT inhibition blocked NRP2 upregulation, whereas RNA interference-mediated attenuation of ZEB1 reduced steady-state NRP2 levels. In addition, NRP2 attenuation inhibited TGF-ß1-driven morphologic transformation, migration/invasion, ERK activation, growth suppression, and changes in gene expression. In a mouse xenograft model of lung cancer, NRP2 attenuation also inhibited locally invasive features of the tumor and reversed TGF-ß1-mediated growth inhibition. In support of these results, human lung cancer specimens with the highest NRP2 expression were predominantly E-cadherin negative. Furthermore, the presence of NRP2 staining strengthened the association of E-cadherin loss with high-grade tumors. Together, our results demonstrate that NRP2 contributes significantly to TGF-ß1-induced EMT in lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/genética , Neuropilina-2/genética , Factor de Crecimiento Transformador beta1/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/genética , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Células Tumorales Cultivadas , Regulación hacia Arriba
20.
Radiother Oncol ; 106(1): 138-46, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23321494

RESUMEN

BACKGROUND AND PURPOSE: Despite appropriate radiotherapy, high-risk prostate cancer patients often experience local relapse and progression to metastatic disease. Radioresistance may be due to tumor-hypoxia but also due to the PTEN mutation/deletion present in 70% prostate cancers. We investigated whether the novel PI3K/mTOR inhibitor BEZ235 might sensitize prostate cancer cells to radiation and reduce hypoxia-induced radioresistance. MATERIALS AND METHODS: The potential radiosensitizing properties of BEZ235 were investigated in vitro and in vivo using two prostate cancer cell lines, PC3 (PTEN(-/-)) and DU145 (PTEN(+/+)), under normoxic (21% O(2)) and hypoxic (0.5% O(2)) conditions. RESULTS: BEZ235 rapidly inhibited PI3K and mTOR signaling in a dose dependent manner and limited tumor cell proliferation and clonogenic survival in both cell lines independently of PTEN status. In vivo, BEZ235 pretreatment enhanced the efficacy of radiation therapy on PC3 xenograft tumors in mice without inducing intestinal radiotoxicity. In culture, BEZ235 radiosensitized both cell lines in a comparable manner. Moreover, BEZ235 inhibited PI3K/mTOR activation and radiosensitized both cell lines under normoxia and hypoxia. BEZ235 radiosensitizing effects correlated with a decrease in γH2AX foci repair and increased G2/M cell cycle arrest. CONCLUSIONS: BEZ235 is a potent radiosensitizer of normoxic and hypoxic prostate cancer cells.


Asunto(s)
Imidazoles/farmacología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Neoplasias de la Próstata/radioterapia , Quinolinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Puntos de Control del Ciclo Celular , Hipoxia de la Célula , Línea Celular Tumoral , Roturas del ADN , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA