Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Stat Med ; 42(18): 3164-3183, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37231622

RESUMEN

Disease modeling is an essential tool to describe disease progression and its heterogeneity across patients. Usual approaches use continuous data such as biomarkers to assess progression. Nevertheless, categorical or ordinal data such as item responses in questionnaires also provide insightful information about disease progression. In this work, we propose a disease progression model for ordinal and categorical data. We built it on the principles of disease course mapping, a technique that uniquely describes the variability in both the dynamics of progression and disease heterogeneity from multivariate longitudinal data. This extension can also be seen as an attempt to bridge the gap between longitudinal multivariate models and the field of item response theory. Application to the Parkinson's progression markers initiative cohort illustrates the benefits of our approach: a fine-grained description of disease progression at the item level, as compared to the aggregated total score, together with improved predictions of the patient's future visits. The analysis of the heterogeneity across individual trajectories highlights known disease trends such as tremor dominant or postural instability and gait difficulties subtypes of Parkinson's disease.


Asunto(s)
Enfermedad de Parkinson , Temblor , Humanos , Progresión de la Enfermedad , Biomarcadores
2.
Mov Disord ; 38(1): 35-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273394

RESUMEN

BACKGROUND: The Scale for the Assessment and Rating of Ataxia (SARA) is the reference clinical scale to assess the severity of cerebellar ataxia. In the context of upcoming therapeutic trials, a reliable clinical outcome is needed to assess the efficiency of treatments. OBJECTIVE: The aim is to precisely assess and compare temporal dynamics of SARA and a new f-SARA. METHODS: We analyzed data from four cohorts (EUROSCA, RISCA, CRC-SCA, and SPATAX) comprising 1210 participants and 4092 visits. The linearity of the progression and the variability were assessed using an ordinal Bayesian mixed-effect model (Leaspy). We performed sample size calculations for therapeutic trials with different scenarios to improve the responsiveness of the scale. RESULTS: Seven of the eight different items had a nonlinear progression. The speed of progression was different between most of the items, with an average time for a one-point increase from 3.5 years [3.4; 3.6] (median, 95% credible interval) for the fastest item to 11.4 [10.9; 12.0] years. The total SARA score had a linear progression with an average time for a one-point increase of 0.95 [0.92; 0.98] years. After removing the four last items and rescaling all items from 0 to 4, variability increased and progression was slower and thus would require a larger sample size in a future therapeutic trial. CONCLUSION: Despite a heterogeneous temporal dynamics at the item level, the global progression of SARA was linear. Changing the initial scale deteriorates the responsiveness. This new information about the temporal dynamics of the scale should help design the outcome of future clinical trials. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Trastornos del Movimiento , Ataxias Espinocerebelosas , Humanos , Teorema de Bayes , Progresión de la Enfermedad , Ataxias Espinocerebelosas/complicaciones , Ataxias Espinocerebelosas/diagnóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA