Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Transl Med ; 13(601)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34233953

RESUMEN

The human nasopharynx contains a stable microbial ecosystem of commensal and potentially pathogenic bacteria, which can elicit protective primary and secondary immune responses. Experimental intranasal infection of human adults with the commensal Neisseria lactamica produced safe, sustained pharyngeal colonization. This has potential utility as a vehicle for sustained release of antigen to the human mucosa, but commensals in general are thought to be immunologically tolerated. Here, we show that engineered N. lactamica, chromosomally transformed to express a heterologous vaccine antigen, safely induces systemic, antigen-specific immune responses during carriage in humans. When the N. lactamica expressing the meningococcal antigen Neisseria Adhesin A (NadA) was inoculated intranasally into human volunteers, all colonized participants carried the bacteria asymptomatically for at least 28 days, with most (86%) still carrying the bacteria at 90 days. Compared to an otherwise isogenic but phenotypically wild-type strain, colonization with NadA-expressing N. lactamica generated NadA-specific immunoglobulin G (IgG)- and IgA-secreting plasma cells within 14 days of colonization and NadA-specific IgG memory B cells within 28 days of colonization. NadA-specific IgG memory B cells were detected in peripheral blood of colonized participants for at least 90 days. Over the same period, there was seroconversion against NadA and generation of serum bactericidal antibody activity against a NadA-expressing meningococcus. The controlled infection was safe, and there was no transmission to adult bedroom sharers during the 90-day period. Genetically modified N. lactamica could therefore be used to generate beneficial immune responses to heterologous antigens during sustained pharyngeal carriage.


Asunto(s)
Vacunas Meningococicas , Neisseria lactamica , Adulto , Anticuerpos Antibacterianos , Antígenos Heterófilos , Ecosistema , Humanos , Memoria Inmunológica
2.
PLoS One ; 11(10): e0163889, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27701435

RESUMEN

Macrophages are essential to maintaining lung homoeostasis and recent work has demonstrated that influenza-infected lung macrophages downregulate their expression of the scavenger receptor CD36. This receptor has also been shown to be involved in phagocytosis of Streptococcus pneumoniae, a primary agent associated with pneumonia secondary to viral infection. The aim of this study was to investigate the role of CD36 in the effects of viral infection on macrophage phagocytic function. Human monocyte-derived macrophages (MDM) were exposed to H3N2 X31 influenza virus, M37 respiratory syncytial virus (RSV) or UV-irradiated virus. No infection of MDM was seen upon exposure to UV-irradiated virus but incubation with live X31 or M37 resulted in significant levels of viral detection by flow cytometry or RT-PCR respectively. Infection resulted in significantly diminished uptake of S. pneumoniae by MDM and significantly decreased expression of CD36 at both the cell surface and mRNA level. Concurrently, there was a significant increase in IFNß gene expression in response to infection and we observed a significant decrease in bacterial phagocytosis (p = 0.031) and CD36 gene expression (p = 0.031) by MDM cultured for 24 h in 50IU/ml IFNß. Knockdown of CD36 by siRNA resulted in decreased phagocytosis, but this was mimicked by transfection reagent alone. When MDM were incubated with CD36 blocking antibodies no effect on phagocytic ability was observed. These data indicate that autologous IFNß production by virally-infected cells can inhibit bacterial phagocytosis, but that decreased CD36 expression by these cells does not play a major role in this functional deficiency.


Asunto(s)
Antígenos CD36/genética , Antígenos CD36/metabolismo , Macrófagos Alveolares/microbiología , Virus ARN/patogenicidad , Streptococcus pneumoniae/patogenicidad , Células Cultivadas , Regulación hacia Abajo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Interferón beta/metabolismo , Macrófagos Alveolares/inmunología , Fagocitosis , Virus ARN/genética , ARN Viral/genética , Virus Sincitiales Respiratorios/genética , Virus Sincitiales Respiratorios/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA