Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Gene Ther ; 31(5-6): 295-303, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38429432

RESUMEN

Neospora caninum is an obligate intracellular protozoan that affects several animal species. It is not pathogenic for humans, and its ability to infect and lyse a variety of cells and stimulate the immune system makes it an interesting drug candidate in oncology. The intrinsic oncolytic properties of N. caninum have been confirmed in several preclinical models. Moreover, it can be modified to improve its safety and/or efficacy against cancer cells. In this study, we propose the legal categorization of this new biological drug candidate and the impact of modifications, notably the integration of a suicide gene, the deletion of a gene allowing its multiplication in healthy cells, and/or the insertion of a gene coding for a therapeutic protein into its genome. When unmodified, N. caninum can be categorized as a biological medicinal product, whereas modifications aimed at increasing its safety classify it as a Somatic Cell Therapy Medicinal Product, and modifications aiming to increase its efficacy or both safety and efficacy make it as a Gene Therapy Medicinal Product. This categorization is fundamental because it determines the guidelines applicable for preclinical development. These guidelines being numerous and complex, we have focused on the key requirements necessary for the development of the future medicinal product.


Asunto(s)
Neospora , Humanos , Animales , Neospora/genética , Neospora/metabolismo , Terapia Genética/métodos , Neoplasias/terapia , Neoplasias/genética
2.
Front Microbiol ; 13: 1062113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620055

RESUMEN

Lactic acid bacteria, including the microorganisms formerly designated as Lactobacillus, are the major representatives of Live Biotherapeutic Microorganisms (LBM) when used for therapeutic purposes. However, in most cases, the mechanisms of action remain unknown. The antifungal potential of LBM has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. Here, Caenorhabditis elegans was used as an in vivo model to analyze pro-longevity, anti-aging and anti-candidiasis effects of the LBM Lacticaseibacillus rhamnosus (formerly Lactobacillus rhamnosus) Lcr35®. A high-throughput transcriptomic analysis revealed a specific response of C. elegans depending on whether it is in the presence of the LBM L. rhamnosus Lcr35® (structural response), the yeast Candida albicans (metabolic response) or both (structural and metabolic responses) in a preventive and a curative conditions. Studies on C. elegans mutants demonstrated that the p38 MAPK (sek-1, skn-1) and the insulin-like (daf-2, daf-16) signaling pathways were involved in the extended lifespan provided by L. rhamnosus Lcr35® strain whereas the JNK pathway was not involved (jnk-1). In addition, the anti C. albicans effect of the bacterium requires the daf-16 and sek-1 genes while it is independent of daf-2 and skn-1. Moreover, the anti-aging effect of Lcr35®, linked to the extension of longevity, is not due to protection against oxidative stress (H2O2). Taken together, these results formally show the involvement of the p38 MAP kinase and insulin-like signaling pathways for the longevity extension and anti-Candida albicans properties of Lcr35® with, however, differences in the genes involved. Overall, these findings provide new insight for understanding the mechanisms of action of a probiotic strain with antimicrobial potential.

3.
Nutrients ; 13(3)2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33802038

RESUMEN

Many studies have highlighted the relationship between food and health status, with the aim of improving both disease prevention and life expectancy. Among the different food groups, fermented foods a have huge microbial biodiversity, making them an interesting source of metabolites that could exhibit health benefits. Our previous study highlighted the capacity of raw goat milk cheese, and some of the extracts recovered by the means of chemical fractionation, to increase the longevity of the nematode Caenorhabditis elegans. In this article, we pursued the investigation with a view toward understanding the biological mechanisms involved in this phenomenon. Using mutant nematode strains, we evaluated the implication of the insulin-like DAF-2/DAF-16 and the p38 MAPK pathways in the phenomenon of increased longevity and oxidative-stress resistance mechanisms. Our results demonstrated that freeze-dried raw goat milk cheese, and its extracts, induced the activation of the DAF-2/DAF-16 pathway, increasing longevity. Concerning oxidative-stress resistance, all the extracts increased the survival of the worms, but no evidence of the implication of both of the pathways was highlighted, except for the cheese-lipid extract that did seem to require both pathways to improve the survival rate. Simultaneously, the cheese-lipid extract and the dried extract W70, obtained with water, were able to reduce the reactive oxygen species (ROS) production in human leukocytes. This result is in good correlation with the results obtained with the nematode.


Asunto(s)
Caenorhabditis elegans/fisiología , Queso , Leucocitos/fisiología , Estrés Oxidativo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Supervivencia Celular , Alimentos en Conserva , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Liofilización , Regulación de la Expresión Génica , Longevidad , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Leche , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
4.
PLoS One ; 15(11): e0242370, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33211771

RESUMEN

With the ever-increasing human lifespan, age-related affections have become a public health issue. The health sector is looking for new bioactive compounds to respond to this demand. The unexplored microbial biodiversity and its metabolites represent a major source of innovative bioactive molecules with health potential. Fermented foods, such as raw-milk cheese, have already been investigated for their rich microbial environment, especially for their organoleptic qualities. But studies remain limited regarding their effects on health and few metabolites of microbial origin have been identified. An efficient methodology was developed in this study to investigate the biological effect of raw-milk cheese, combining a chemical fractionation, to isolate the most metabolites from the cheese matrix, and an in vivo biological test using Caenorhabditis elegans. C. elegans was brought into contact with cheese extracts, obtained by means of chemical fractionation, and with freeze-dried whole cheese by supplementing the nematode growth medium. A longevity assay was performed to evaluate the effects of the extracts on the worms. Our results demonstrate the feasibility of the method developed to bring the worms into contact of the cheese extracts. The evaluation of the effects of the extracts on the longevity was possible. Some extracts showed a beneficial effect as extract W70 for example, obtained with water, which increases the mean lifespan by 16% and extends the longevity by 73% (p < 0.0001).


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Queso/análisis , Fraccionamiento Químico/métodos , Mezclas Complejas/farmacología , Análisis de los Alimentos/métodos , Acetatos , Animales , Caenorhabditis elegans/fisiología , Mezclas Complejas/aislamiento & purificación , Mezclas Complejas/toxicidad , Ciclohexanos , Etanol , Estudios de Factibilidad , Liofilización , Cabras , Interacciones Hidrofóbicas e Hidrofílicas , Longevidad/efectos de los fármacos , Cloruro de Metileno , Leche/química , Solventes , Agua
5.
Microorganisms ; 8(6)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570901

RESUMEN

The design of multiscale strategies integrating in vitro and in vivo models is necessary for the selection of new probiotics. In this regard, we developed a screening assay based on the investigation of the potential of yeasts from cheese as probiotics against the pathogen Salmonella Typhimurium UPsm1 (ST). Two yeasts isolated from raw-milk cheese (Saccharomyces cerevisiae 16, Sc16; Debaryomyces hansenii 25, Dh25), as well as S. cerevisiae subspecies boulardii (CNCM I-1079, Sb1079), were tested against ST by applying in vitro and in vivo tests. Adherence measurements to Caco-2 and HT29-MTX intestinal cells indicated that the two tested cheese yeasts presented a better adhesion than the probiotic Sb1079 as the control strain. Further, the Dh25 was the cheese yeast most likely to survive in the gastrointestinal tract. What is more, the modulation of the TransEpithelial Electrical Resistance (TEER) of differentiated Caco-2 cell monolayers showed the ability of Dh25 to delay the deleterious effects of ST. The influence of microorganisms on the in vivo model Caenorhabditis elegans was evaluated by measuring the longevity of the worm. This in vivo approach revealed that this yeast increased the worm's lifespan and protected it against ST infection, confirming that this in vivo model can be useful for screening probiotic cheese yeasts.

6.
Front Nutr ; 7: 135, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425969

RESUMEN

Caenorhabditis elegans, a non-parasitic nematode emerges as a relevant and powerful candidate as an in vivo model for microorganisms-microorganisms and microorganisms-host interactions studies. Experiments have demonstrated the probiotic potential of bacteria since they can provide to the worm a longer lifespan, an increased resistance to pathogens and to oxidative or heat stresses. Probiotics are used to prevent or treat microbiota dysbiosis and associated pathologies but the molecular mechanisms underlying their capacities are still unknown. Beyond safety and healthy aspects of probiotics, C. elegans represents a powerful way to design large-scale studies to explore transkingdom interactions and to solve questioning about the molecular aspect of these interactions. Future challenges and opportunities would be to validate C. elegans as an in vivo tool for high-throughput screening of microorganisms for their potential probiotic use on human health and to enlarge the panels of microorganisms studied as well as the human diseases investigated.

7.
Microorganisms ; 8(1)2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878039

RESUMEN

The resistance of Candida albicans to conventional drug treatments, as well as the recurrence phenomena due to dysbiosis caused by antifungal treatments, have highlighted the need to implement new therapeutic methodologies. The antifungal potential of live biotherapeutic products (LBP) has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding their mechanisms of action is strategic for the development of new therapeutics for humans. In this study, we investigated the curative anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell and the in vivo Caenorhabditis elegans models. We showed that Lcr35® does inhibit neither the growth (p = 0.603) nor the biofilm formation (p = 0.869) of C. albicans in vitro. Lcr35® protects the animal from the fungal infection (+225% of survival, p < 2 × 10-16) even if the yeast is detectable in its intestine. In contrast, the Lcr35® cell-free supernatant does not appear to have any antipathogenic effect. At the mechanistic level, the DAF-16/Forkhead Box O transcription factor is activated by Lcr35® and genes of the p38 MAP Kinase signaling pathway and genes involved in the antifungal response are upregulated in presence of Lcr35® after C. albicans infection. These results suggest that the LBM strain acts by stimulating its host via DAF-16 and the p38 MAPK pathway.

8.
PLoS One ; 14(11): e0216184, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31693670

RESUMEN

The increased recurrence of Candida albicans infections is associated with greater resistance to antifungal drugs. This involves the establishment of alternative therapeutic protocols, such as probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic microorganisms has become a strategic need for the development of new therapeutics for humans. In this study, we investigated the prophylactic anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell model and the in vivo Caenorhabditis elegans model. In Caco-2 cells, we showed that the strain Lcr35® significantly inhibited the growth (~2 log CFU.mL-1) and adhesion (150 to 6,300 times less) of the pathogen. Moreover, in addition to having a pro-longevity activity in the nematode (+42.9%, p = 3.56.10-6), Lcr35® protects the animal from the fungal infection (+267% of survival, p < 2.10-16) even if the yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of the p38 MAPK signalling pathway and genes involved in the antifungal response induced by Lcr35®, suggesting that the pathogen no longer appears to be detected by the worm immune system. However, the DAF-16/FOXO transcription factor, implicated in the longevity and antipathogenic response of C. elegans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating its host via DAF-16 but also by suppressing the virulence of the pathogen.


Asunto(s)
Candida albicans , Candidiasis/prevención & control , Lacticaseibacillus rhamnosus , Probióticos/uso terapéutico , Transporte Activo de Núcleo Celular , Animales , Animales Modificados Genéticamente , Células CACO-2 , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Candida albicans/crecimiento & desarrollo , Candida albicans/patogenicidad , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Humanos , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA