Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38503562

RESUMEN

Synthetic Communities (SynComs) are being developed and tested to manipulate plant microbiota and improve plant health. To date, only few studies proposed the use of SynCom on seed despite its potential for plant microbiota engineering. We developed and presented a simple and effective seedling microbiota engineering method using SynCom inoculation on seeds. The method was successful using a wide diversity of SynCom compositions and bacterial strains that are representative of the common bean seed microbiota. First, this method enables the modulation of seed microbiota composition and community size. Then, SynComs strongly outcompeted native seed and potting soil microbiota and contributed on average to 80% of the seedling microbiota. We showed that strain abundance on seed was a main driver of an effective seedling microbiota colonization. Also, selection was partly involved in seed and seedling colonization capacities since strains affiliated to Enterobacteriaceae and Erwiniaceae were good colonizers while Bacillaceae and Microbacteriaceae were poor colonizers. Additionally, the engineered seed microbiota modified the recruitment and assembly of seedling and rhizosphere microbiota through priority effects. This study shows that SynCom inoculation on seeds represents a promising approach to study plant microbiota assembly and its consequence on plant fitness.


Asunto(s)
Microbiota , Plantones , Plantones/microbiología , Semillas , Plantas/microbiología , Suelo
2.
Mol Plant Pathol ; 25(1): e13412, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279854

RESUMEN

Stenotrophomonas rhizophila CFBP13503 is a seedborne commensal bacterial strain, which is efficiently transmitted to seedlings and can outcompete the phytopathogenic bacterium Xanthomonas campestris pv. campestris (Xcc8004). The type VI secretion system (T6SS), an interference contact-dependent mechanism, is a critical component of interbacterial competition. The involvement of the T6SS of S. rhizophila CFBP13503 in the inhibition of Xcc8004 growth and seed-to-seedling transmission was assessed. The T6SS cluster of S. rhizophila CFBP13503 and nine putative effectors were identified. Deletion of two T6SS structural genes, hcp and tssB, abolished the competitive advantage of S. rhizophila against Xcc8004 in vitro. The population sizes of these two bacterial species were monitored in seedlings after inoculation of radish seeds with mixtures of Xcc8004 and either S. rhizophila wild-type (wt) strain or isogenic hcp mutant. A significant decrease in the population size of Xcc8004 was observed during confrontation with the S. rhizophila wt in comparison with T6SS-deletion mutants in germinated seeds and seedlings. We found that the T6SS distribution among 835 genomes of the Stenotrophomonas genus is scarce. In contrast, in all available S. rhizophila genomes, T6SS clusters are widespread and mainly belong to the T6SS group i4. In conclusion, the T6SS of S. rhizophila CFBP13503 is involved in the antibiosis against Xcc8004 and reduces seedling transmission of Xcc8004 in radish. The distribution of this T6SS cluster in the S. rhizophila complex could make it possible to exploit these strains as biocontrol agents against X. campestris pv. campestris.


Asunto(s)
Raphanus , Sistemas de Secreción Tipo VI , Xanthomonas campestris , Plantones/microbiología , Xanthomonas campestris/genética , Semillas/microbiología , Stenotrophomonas/genética , Proteínas Bacterianas/genética
3.
mBio ; 13(6): e0164822, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36222511

RESUMEN

The seed acts as the primary inoculum source for the plant microbiota. Understanding the processes involved in its assembly and dynamics during germination and seedling emergence has the potential to allow for the improvement of crop establishment. Changes in the bacterial community structure were tracked in 1,000 individual seeds that were collected throughout seed developments of beans and radishes. Seeds were associated with a dominant bacterial taxon that represented more than 75% of all reads. The identity of this taxon was highly variable between the plants and within the seeds of the same plant. We identified selection as the main ecological process governing the succession of dominant taxa during seed filling and maturation. In a second step, we evaluated the seedling transmission of seed-borne taxa in 160 individual plants. While the initial bacterial abundance on seeds was not a good predictor of seedling transmission, the identities of the seed-borne taxa modified the phenotypes of seedlings. Overall, this work revealed that individual seeds are colonized by a few bacterial taxa of highly variable identity, which appears to be important for the early stages of plant development. IMPORTANCE Seeds are key components of plant fitness and are central to the sustainability of the agri-food system. Both the seed quality for food consumption and the seed vigor in agricultural settings can be influenced by the seed microbiota. Understanding the ecological processes involved in seed microbiota assembly will inform future practices for promoting the presence of important seed microorganisms for plant health and productivity. Our results highlighted that seeds were associated with one dominant bacterial taxon of variable taxonomic identity. This variety of dominant taxa was due to (i) spatial heterogeneity between and within plants and (ii) primary succession during seed development. According to neutral models, selection was the main driver of microbial community assembly for both plant species.


Asunto(s)
Microbiota , Plantones , Germinación , Semillas/microbiología
4.
Phytopathology ; 112(3): 691-699, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34289714

RESUMEN

Accurate assessment of plant symptoms plays a key role for measuring the impact of pathogens during plant-pathogen interaction. Common bacterial blight caused by Xanthomonas phaseoli pv. phaseoli and X. citri pv. fuscans is a major threat to common bean. The pathogenicity of these bacteria is variable among strains and depends mainly on a type III secretion system and associated type III effectors such as transcription activator-like effectors. Because the impact of a single gene is often small and difficult to detect, a discriminating methodology is required to distinguish the slight phenotype changes induced during the progression of the disease. Here, we compared two different inoculation and symptom assessment methods for their ability to distinguish two tal mutants from their corresponding wild-type strains. Interestingly, rub inoculation of the first leaves combined with symptom assessment by machine learning-based imaging allowed significant distinction between wild-type and mutant strains. By contrast, dip inoculation of first-trifoliate leaves combined with chlorophyll fluorescence imaging did not differentiate the strains. Furthermore, the new method developed here led to the miniaturization of pathogenicity tests and significant time savings.


Asunto(s)
Fabaceae , Enfermedades de las Plantas , Bacterias , Aprendizaje Automático , Enfermedades de las Plantas/microbiología , Virulencia
5.
FEMS Microbiol Ecol ; 96(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-32966572

RESUMEN

Seed microbiota acts as a starting point for the assembly of the plant microbiota and contributes to successful plant establishment. To date, the order and timing of microbial taxa immigration during seed development and maturation remained unknown. We investigated the temporal dynamics of seed bacterial communities in bean and radish. A high phylogenetic turnover was observed for both plant species with few taxa associated with all seed developmental stages. Greater heterogeneity in communities structure within each stage was observed for radish. While, about one-third of radish seed bacterial taxa were detected in buds, flowers and fruits, very few taxa seem to be transmitted by the floral route in bean. In the latter species, bacterial populations belonging to the P. fluorescens species complex were found either in buds, flowers and fruits or in seeds. The relative phylogenetic proximity of these bacterial populations combined with their habitat specificity led us to explore the genetic determinants involved in successful seed transmission in bean. Comparative genomic analyses of representatives bacterial strains revealed dozens of coding sequences specifically associated with seed-transmitted strains. This study provided a first glimpse on processes involved in seed microbiota assembly, which could be used for designing plant-beneficial microbial consortia.


Asunto(s)
Microbiota , Semillas , Bacterias/genética , Flores , Filogenia
7.
BMC Genomics ; 21(1): 566, 2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811445

RESUMEN

BACKGROUND: Common bacterial blight (CBB) caused by Xanthomonas phaseoli pv. phaseoli and Xanthomonas citri pv. fuscans is one of the major threats to common bean crops (Phaseolus vulgaris L.). Resistance to CBB is particularly complex as 26 quantitative resistance loci to CBB have been described so far. To date, transcriptomic studies after CBB infection have been very scarce and the molecular mechanisms underlying susceptibility or resistance are largely unknown. RESULTS: We sequenced and annotated the genomes of two common bean genotypes being either resistant (BAT93) or susceptible (JaloEEP558) to CBB. Reciprocal BLASTp analysis led to a list of 20,787 homologs between these genotypes and the common bean reference genome (G19833), which provides a solid dataset for further comparative analyses. RNA-Seq after inoculation with X. phaseoli pv. phaseoli showed that the susceptible genotype initiated a more intense and diverse biological response than the resistant genotype. Resistance was linked to upregulation of the salicylic acid pathway and downregulation of photosynthesis and sugar metabolism, while susceptibility was linked to downregulation of resistance genes and upregulation of the ethylene pathway and of genes involved in cell wall modification. CONCLUSIONS: This study helps better understanding the mechanisms occurring during the early colonization phase of common bean by Xanthomonas and unveils new actors potentially important for resistance and susceptibility to CBB. We discuss the potential link between the pathways induced during bean colonization and genes induced by transcription activator-like effectors (TALEs), as illustrated in other Xanthomonas pathovars.


Asunto(s)
Phaseolus , Xanthomonas , Regulación hacia Abajo , Phaseolus/genética , Fotosíntesis/genética , Enfermedades de las Plantas/genética , Ácido Salicílico , Regulación hacia Arriba
8.
PeerJ ; 4: e1923, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27077013

RESUMEN

Seeds are involved in the vertical transmission of microorganisms from one plant generation to another and consequently act as reservoirs for the plant microbiota. However, little is known about the structure of seed-associated microbial assemblages and the regulators of assemblage structure. In this work, we have assessed the response of seed-associated microbial assemblages of Raphanus sativus to invading phytopathogenic agents, the bacterial strain Xanthomonas campestris pv. campestris (Xcc) 8004 and the fungal strain Alternaria brassicicola Abra43. According to the indicators of bacterial (16S rRNA gene and gyrB sequences) and fungal (ITS1) diversity employed in this study, seed transmission of the bacterial strain Xcc 8004 did not change the overall composition of resident microbial assemblages. In contrast seed transmission of Abra43 strongly modified the richness and structure of fungal assemblages without affecting bacterial assemblages. The sensitivity of seed-associated fungal assemblage to Abra43 is mostly related to changes in relative abundance of closely related fungal species that belong to the Alternaria genus. Variation in stability of the seed microbiota in response to Xcc and Abra43 invasions could be explained by differences in seed transmission pathways employed by these micro-organisms, which ultimately results in divergence in spatio-temporal colonization of the seed habitat.

9.
Environ Microbiol ; 18(6): 1792-804, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26171841

RESUMEN

Seeds have evolved in association with diverse microbial assemblages that may influence plant growth and health. However, little is known about the composition of seed-associated microbial assemblages and the ecological processes shaping their structures. In this work, we monitored the relative influence of the host genotypes and terroir on the structure of the seed microbiota through metabarcoding analysis of different microbial assemblages associated to five different bean cultivars harvested in two distinct farms. Overall, few bacterial and fungal operational taxonomic units (OTUs) were conserved across all seed samples. The lack of shared OTUs between samples is explained by a significant effect of the farm site on the structure of microbial assemblage, which explained 12.2% and 39.7% of variance in bacterial and fungal diversity across samples. This site-specific effect is reflected by the significant enrichment of 70 OTUs in Brittany and 88 OTUs in Luxembourg that lead to differences in co-occurrence patterns. In contrast, variance in microbial assemblage structure was not explained by host genotype. Altogether, these results suggest that seed-associated microbial assemblage is determined by niche-based processes and that the terroir is a key driver of these selective forces.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/aislamiento & purificación , Microbiota , Semillas/microbiología , Bacterias/genética , Ecosistema , Hongos/genética
10.
Appl Environ Microbiol ; 81(4): 1257-66, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25501471

RESUMEN

Seeds carry complex microbial communities, which may exert beneficial or deleterious effects on plant growth and plant health. To date, the composition of microbial communities associated with seeds has been explored mainly through culture-based diversity studies and therefore remains largely unknown. In this work, we analyzed the structures of the seed microbiotas of different plants from the family Brassicaceae and their dynamics during germination and emergence through sequencing of three molecular markers: the ITS1 region of the fungal internal transcribed spacer, the V4 region of 16S rRNA gene, and a species-specific bacterial marker based on a fragment of gyrB. Sequence analyses revealed important variations in microbial community composition between seed samples. Moreover, we found that emergence strongly influences the structure of the microbiota, with a marked reduction of bacterial and fungal diversity. This shift in the microbial community composition is mostly due to an increase in the relative abundance of some bacterial and fungal taxa possessing fast-growing abilities. Altogether, our results provide an estimation of the role of the seed as a source of inoculum for the seedling, which is crucial for practical applications in developing new strategies of inoculation for disease prevention.


Asunto(s)
Bacterias/aislamiento & purificación , Biodiversidad , Brassicaceae/crecimiento & desarrollo , Hongos/aislamiento & purificación , Microbiota , Semillas/microbiología , Bacterias/clasificación , Bacterias/genética , Brassicaceae/microbiología , Hongos/clasificación , Hongos/genética , Germinación , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA