Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38726825

RESUMEN

Bacterial species referred to as magnetotactic bacteria (MTB) biomineralize iron oxides and iron sulphides inside the cell. Bacteria can arrange themselves passively along geomagnetic field lines with the aid of these iron components known as magnetosomes. In this study, magnetosome nanoparticles, which were obtained from the taxonomically identified MTB isolate Providencia sp. PRB-1, were characterized and their antibacterial activity was evaluated. An in vitro test showed that magnetosome nanoparticles significantly inhibited the growth of Staphylococcus sp., Pseudomonas aeruginosa, and Klebsiella pneumoniae. Magnetosomes were found to contain cuboidal iron crystals with an average size of 42 nm measured by particle size analysis and scanning electron microscope analysis. The energy dispersive X-ray examination revealed that Fe and O were present in the extracted magnetosomes. The extracted magnetosome nanoparticles displayed maximum absorption at 260 nm in the UV-Vis spectrum. The distinct magnetite peak in the Fourier transform infrared (FTIR) spectroscopy spectra was observed at 574.75 cm-1. More research is needed into the intriguing prospect of biogenic magnetosome nanoparticles for antibacterial applications.


Asunto(s)
Antibacterianos , Magnetosomas , Providencia , Pseudomonas aeruginosa , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Pseudomonas aeruginosa/efectos de los fármacos , Magnetosomas/química , Magnetosomas/metabolismo , Providencia/química , Providencia/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/crecimiento & desarrollo , Nanopartículas/química , Pruebas de Sensibilidad Microbiana , Staphylococcus/efectos de los fármacos , Staphylococcus/crecimiento & desarrollo , Tamaño de la Partícula , Hierro/química , Hierro/metabolismo , Nanopartículas de Magnetita/química
2.
J Mol Model ; 30(1): 22, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170229

RESUMEN

CONTEXT: It is well known that antibiotic resistance is a major health hazard. To eradicate antibiotic-resistant bacterial infections, it is essential to find a novel antibacterial agent. Hence, in this study, a quantitative structure-activity relationship (QSAR) model was developed using 43 DNA gyrase inhibitors, and 700 natural compounds were screened for their antibacterial properties. Based on molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies, the top three leads viz., apigenin-4'-glucoside, 8-deoxygartanin, and cryptodorine were selected and structurally optimized using density functional theory (DFT) studies. The optimized structures were redocked, and molecular dynamic (MD) simulations were performed. Binding energies were calculated by molecular mechanics/Poisson-Boltzmann surface area solvation (MM-PBSA). Based on the above studies, apigenin-4'-glucoside was identified as a potent antibacterial lead. Further in vitro confirmation studies were performed using the plant Lawsonia inermis containing apigenin-4'-glucoside to confirm the antibacterial activity. METHODS: For QSAR modeling, 2D descriptors were calculated by PaDEL-Descriptors v2.21 software, and the model was developed using the DTClab QSAR tool. Docking was performed using PyRx v0.8 software. ORCA v5.0.1 computational package was used to optimize the structures. The job type used in optimization was equilibrium structure search using the DFT hybrid functional ORCA method B3LYP. The basis set was 6-311G (3df, 3pd) plus four polarization functions for all atoms. Accurate docking was performed for optimized leads using the iGEMDOCK v2.1 tool with a genetic algorithm by 10 solutions each of 80 generations. Molecular dynamic simulations were performed using GROMACS 2020.04 software with CHARMM36 all-atom force field.


Asunto(s)
Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Apigenina/farmacología , Antibacterianos/farmacología , Girasa de ADN/química
3.
Appl Biochem Biotechnol ; 194(11): 5132-5150, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35695951

RESUMEN

Endophytic fungi were isolated from forty plant leaf samples from Gudiyam forest. The potent antibacterial strain Aspergillus niger E12 isolated from the plant Dodonaea viscosa showed maximal antibacterial activity against all the test organisms, viz., Staphylococcus aureus, Bacillus coagulans, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The production of the antibacterial compound was optimized using the yeast extract sucrose medium (2% YES) using response surface methodology (RSM). For the production, the optimal parameters were carbon/nitrogen (C:N) ratio, 9:1; temperature, 25 °C; pH, 5.7; incubation time, 240 h; and rpm, 30. A zone of inhibition of 19.33 mm was observed as maximal bioactivity against Pseudomonas aeruginosa. The antibacterial compound was purified by extraction with ethyl acetate, activity-guided fractionation, and preparative high-performance liquid chromatography (HPLC), gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) studies showed that the Aspergillus niger E12 bioactive substance is 4a-methyl-dodecahydro-1H-pyrrolo [3,4-b] quinoline-6-one.


Asunto(s)
Antibacterianos , Quinolinas , Antibacterianos/química , Aspergillus niger , Hongos , Pseudomonas aeruginosa , Hojas de la Planta/microbiología , Escherichia coli , Nitrógeno , Carbono , Sacarosa , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA