Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
2.
J Biol Chem ; 279(14): 13976-83, 2004 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-14722102

RESUMEN

Glucose is the main physiological stimulus for insulin biosynthesis and secretion by pancreatic beta-cells. Glucose-6-phosphatase (G-6-Pase) catalyzes the dephosphorylation of glucose-6-phosphate to glucose, an opposite process to glucose utilization. G-6-Pase activity in pancreatic islets could therefore be an important factor in the control of glucose metabolism and, consequently, of glucose-dependent insulin secretion. While G-6-Pase activity has been shown to be present in pancreatic islets, the gene responsible for this activity has not been conclusively identified. A homolog of liver glucose-6-phosphatase (LG-6-Pase) specifically expressed in islets was described earlier; however, the authors could not demonstrate enzymatic activity for this protein. Here we present evidence that the previously identified islet-specific glucose-6-phosphatase-related protein (IGRP) is indeed the major islet glucose-6-phosphatase. IGRP overexpressed in insect cells possesses enzymatic activity comparable to the previously described G-6-Pase activity in islets. The K(m) and V(max) values determined using glucose-6-phosphate as the substrate were 0.45 mm and 32 nmol/mg/min by malachite green assay, and 0.29 mm and 77 nmol/mg/min by glucose oxidase/peroxidase coupling assay, respectively. High-throughput screening of a small molecule library led to the identification of an active compound that specifically inhibits IGRP enzymatic activity. Interestingly, this inhibitor did not affect LG-6-Pase activity, while conversely LG-6-Pase inhibitors did not affect IGRP activity. These data demonstrate that IGRP is likely the authentic islet-specific glucose-6-phosphatase catalytic subunit, and selective inhibitors to this molecule can be obtained. IGRP inhibitors may be an attractive new approach for the treatment of insulin secretion defects in type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Islotes Pancreáticos/enzimología , Proteínas/genética , Proteínas/metabolismo , Animales , Baculoviridae/genética , Tampones (Química) , Células COS , Colorantes , Dimetilsulfóxido/farmacología , Activación Enzimática/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Expresión Génica , Glucosa-6-Fosfatasa/antagonistas & inhibidores , Glucosa-6-Fosfatasa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Insectos , Hígado/enzimología , Masculino , Metales/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , ARN Mensajero/análisis , Colorantes de Rosanilina
3.
J Virol ; 75(14): 6392-401, 2001 07.
Artículo en Inglés | MEDLINE | ID: mdl-11413306

RESUMEN

The simian virus 40 (SV40) in vitro replication system was previously used to demonstrate that the human polymerase (Pol) alpha-primase complex preferentially initiates DNA synthesis at pyrimidine-rich trinucleotide sequences. However, it has been reported that under certain conditions, nucleoside triphosphate (NTP) concentrations play a critical role in determining where eukaryotic primase initiates synthesis. Therefore, we have examined whether increased NTP concentrations alter the template locations at which SV40 replication is initiated. Our studies demonstrate that elevated ribonucleotide concentrations do not significantly alter which template sequences serve as initiation sites. Of considerable interest, the sequences that serve as initiation sites in the SV40 system are similar to those that serve as initiation sites for prokaryotic primases. It is also demonstrated that regardless of the concentration of ribonucleotides present in the reactions, DNA synthesis initiated outside of the core origin. These studies provide additional evidence that the Pol alpha-primase complex can initiate DNA synthesis only after a considerable amount of single-stranded DNA is generated.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN Primasa/metabolismo , Replicación del ADN , Ribonucleótidos/metabolismo , Virus 40 de los Simios/metabolismo , Secuencia de Bases , ADN Viral/biosíntesis , Técnicas In Vitro , Datos de Secuencia Molecular , Virus 40 de los Simios/genética , Moldes Genéticos , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA