Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Microbiol Methods ; 221: 106929, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38599390

RESUMEN

Utility of a recently developed long-read pipeline, Emu, was assessed using an expectation-maximization algorithm for accurate read classification. We compared it to conventional short- and long-read pipelines, using well-characterized mock bacterial samples. Our findings highlight the necessity of appropriate data-processing for taxonomic descriptions, expanding our understanding of the precise microbiome.


Asunto(s)
Bacterias , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiota , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Microbiota/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Nanoporos , ADN Bacteriano/genética
2.
Antimicrob Agents Chemother ; 68(3): e0122223, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38265216

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stems from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trial results for recent antibiotic candidates, underscores the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an Minimum inhibitory concentration (MIC90) of 2 µg/mL, which was comparable to vancomycin (1 µg/mL), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK, therefore, represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Animales , Ratones , Vancomicina/farmacología , Oxidorreductasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Fidaxomicina/farmacología , Infecciones por Clostridium/tratamiento farmacológico
3.
Appl Environ Microbiol ; 89(12): e0161923, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-38051072

RESUMEN

IMPORTANCE: Clostridium perfringens causes gas gangrene and food poisoning in humans, and monitoring this bacterium is important for public health. Although whole-genome sequencing is useful to comprehensively understand the virulence, resistome, and global genetic relatedness of bacteria, limited genomic data from environmental sources and developing countries hamper our understanding of the richness of the intrinsic genomic diversity of this pathogen. Here, we successfully accumulated the genetic data on C. perfringens strains isolated from hospital effluent and provided the first evidence that predicted pathogenic C. perfringens may be disseminated in the clinical environment in Ghana. Our findings suggest the importance of risk assessment in the environment as well as the clinical setting to mitigate the potential outbreak of C. perfringens food poisoning in Ghana.


Asunto(s)
Infecciones por Clostridium , Enfermedades Transmitidas por los Alimentos , Humanos , Clostridium perfringens , Aguas Residuales , Ghana , Enfermedades Transmitidas por los Alimentos/microbiología , Infecciones por Clostridium/microbiología
4.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790427

RESUMEN

Clostridioides difficile infection (CDI) is a leading cause of hospital-acquired diarrhea, which often stem from disruption of the gut microbiota by broad-spectrum antibiotics. The increasing prevalence of antibiotic-resistant C. difficile strains, combined with disappointing clinical trials results for recent antibiotic candidates, underscore the urgent need for novel CDI antibiotics. To this end, we investigated C. difficile enoyl ACP reductase (CdFabK), a crucial enzyme in de novo fatty acid synthesis, as a drug target for microbiome-sparing antibiotics. To test this concept, we evaluated the efficacy and in vivo spectrum of activity of the phenylimidazole analog 296, which is validated to inhibit intracellular CdFabK. Against major CDI-associated ribotypes 296 had an MIC90 of 2 µg/ml, which was comparable to vancomycin (1 µg/ml), a standard of care antibiotic. In addition, 296 achieved high colonic concentrations and displayed dosed-dependent efficacy in mice with colitis CDI. Mice that were given 296 retained colonization resistance to C. difficile and had microbiomes that resembled the untreated mice. Conversely, both vancomycin and fidaxomicin induced significant changes to mice microbiomes, in a manner consistent with prior reports. CdFabK therefore represents a potential target for microbiome-sparing CDI antibiotics, with phenylimidazoles providing a good chemical starting point for designing such agents.

5.
Front Microbiol ; 14: 1209195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37664110

RESUMEN

Introduction: The prevalence of Guiana extended-spectrum (GES)-type carbapenemase producers is increasing worldwide, and hospital water environments are considered as potential reservoirs. However, the genetic features underlying this resistance are not yet fully understood. This study aimed to characterize blaGES-encoding plasmids from a single-hospital sewage sample in Japan. Methods: Carbapenemase producers were screened using carbapenemase-selective agar and polymerase chain reaction. Whole-genome sequencing analyzes were performed on the carbapenemase-producing isolates. Results: Eleven gram-negative bacteria (four Enterobacter spp., three Klebsiella spp., three Aeromonas spp., and one Serratia spp.) with blaGES-24 (n = 6), blaGES-6 (n = 4), and blaGES-5 (n = 1) were isolated from the sewage sample. Five blaGES-24 and a blaGES-5 were localized in IncP-6 plasmids, whereas three blaGES-6 plasmids were localized in IncC plasmids with IncF-like regions. The remaining blaGES-6 and blaGES-24 were, respectively, localized on IncFIB-containing plasmids with IncF-like regions and a plasmid with an IncW-like replication protein. The IncP-6 and IncW-like plasmids had a close genetic relationship with plasmids from Japan, whereas the IncC/IncF-like and IncFIB/IncF-like plasmids were closely related to those from the United States and Europe. All blaGES genes were located on the class 1 integron cassette of the Tn3 transposon-related region, and the IncC/IncF-like plasmid carried two copies of the integron cassette. Eight of the eleven blaGES-encoding plasmids contained toxin-antitoxin system genes. Discussion: The findings on the plasmids and the novel genetic content from a single wastewater sample extend our understanding regarding the diversity of resistance and the associated spread of blaGES, suggesting their high adaptability to hospital effluents. These findings highlight the need for the continuous monitoring of environmental GES-type carbapenemase producers to control their dissemination.

7.
Microbiol Spectr ; 10(6): e0332022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453894

RESUMEN

IncX3 and IncL plasmids have been named as catalysts advancing dissemination of blaOXA-181 and blaOXA-48 genes. However, their impact on the performance of host cells is vastly understudied. Genetic characteristics of blaOXA-48- and blaOXA-181-containing Klebsiella pneumoniae (EFN299), Klebsiella quasipneumoniae (EFN262), and Enterobacter cloacae (EFN743) isolated from clinical samples in a Ghanaian hospital were investigated by whole-genome sequencing. Transfer of plasmids by conjugation and electroporation, plasmid stability, fitness cost, and genetic context of blaOXA-48, blaOXA-181, and blaDHA-1 were assessed. blaOXA-181 was carried on two IncX3 plasmids, an intact 51.5-kb IncX3 plasmid (p262-OXA-181) and a 45.3-kb IncX3 plasmid (p743-OXA-181) without replication protein sequence. The fluoroquinolone-resistant gene qnrS1 region was also excised, and unlike in p262-OXA-181, the blaOXA-181 drug-resistant region was not found on a composite transposon. blaOXA-48 was carried on a 74.6-kb conjugative IncL plasmid with unknown ~10.9-kb sequence insertion. This IncL plasmid proved to be highly transferable, with a conjugation efficiency of 1.8 × 10-2. blaDHA-1 was present on an untypeable 22.2 kb genetic structure. Plasmid stability test revealed plasmid loss rate between 4.3% and 12.4%. The results also demonstrated that carriage of IncX3-blaOXA-181 or IncL-blaOXA-48 plasmids was not associated with any fitness defect, but rather an enhanced competitive ability of host cells. This study underscores the significant contribution of IncX3 and IncL plasmids in the dissemination of resistance genes and their efficient transfer calls for regular monitoring to control the expansion of resistant strains. IMPORTANCE The growing rate of antibiotic resistance is an important global health threat. This threat is exacerbated by the lack of safe and potent alternatives to carbapenems in addition to the slow developmental process of newer and effective antibiotics. Infections by carbapenem-resistant Gram-negative bacteria are becoming almost untreatable, leading to poor clinical outcomes and high mortality rates. OXA-48-like carbapenemases are one of the most widespread carbapenemases accounting for resistance among Enterobacteriaecae. We characterized OXA-48- and OXA-181-producing Enterobacteriaecae to gain insights into the genetic basis and mechanism of resistance to carbapenems. Findings from the study showed that the genes encoding these enzymes were carried on highly transmissible plasmids, one of which had sequences absent in other similar plasmids. This implies that mobile genetic elements are important players in the dissemination of resistance genes. Further characterization of this plasmid is warranted to determine the role of this sequence in the spread of resistance genes.


Asunto(s)
Enterobacter cloacae , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacología , Proteínas Bacterianas/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Carbapenémicos/farmacología , Enterobacter cloacae/efectos de los fármacos , Enterobacter cloacae/genética , Ghana , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , Farmacorresistencia Bacteriana
8.
Front Microbiol ; 13: 880248, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677907

RESUMEN

Klebsiella michiganensis is emerging as an important human pathogen of concern especially strains with plasmid-mediated carbapenemase genes. The IncX3-bla NDM-5 plasmid has been described as the primary vector for bla NDM-5 dissemination. However, whether strains with this plasmid have any competitive edge remain largely unexplored. We characterized a bla NDM-5-producing Klebsiella michiganensis strain (KO_408) from Japan and sought to understand the driving force behind the recent dissemination of IncX3-blaNDM-5 plasmids in different bacterial hosts. Antibiotic susceptibility testing, conjugation, and whole-genome sequencing were performed for KO_408, a clinical isolate recovered from a respiratory culture. Fitness, stability, and competitive assays were performed using the IncX3-bla NDM-5 plasmid, pKO_4-NDM-5. KO_408 was ascribed to a novel sequence type, ST256, and harbored resistance genes conforming to its MDR phenotype. The bla NDM-5 gene was localized on the ~44.9 kb IncX3 plasmid (pKO_4-NDM-5), which was transferable in the conjugal assay. The acquisition of pKO_4-NDM-5 did not impose any fitness burden and showed high stability in the host cells. However, transformants with pKO_4-NDM-5 were outcompeted by their host cells and transconjugants with the IncX3-bla OXA-181 plasmid. The genetic environment of bla NDM-5 in pKO_4-NDM-5 has been previously described. pKO_4-NDM-5 showed a close phylogenetic distance with seven similar plasmids from China. KO_408 clustered with strains within the KoI phylogroup, which is closely associated with carbapenemase genes. This study highlights the emergence of a high-risk Klebsiella michiganensis clone harboring carbapenemase genes and affirms that the recent spread of IncX3-bla NDM-5 plasmids might be due to their low fitness cost and stability but not their competitive prowess.

9.
Microbiol Spectr ; 10(3): e0062722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467371

RESUMEN

Neisseria meningitidis causes a life-threatening invasive meningococcal disease (IMD). Isolates resistant to antibiotics, such as penicillin, ceftriaxone, and ciprofloxacin that are recommended for the treatment of IMD patients and their close contacts have been serious public health concerns globally. However, susceptibility profiles to critically important antibiotics and the genetic characteristics of isolates possessing antibiotic resistance are extremely limited as IMD incidence is low in Japan. We assessed the susceptibility profiles of 87 randomly selected, sterile site-derived N. meningitidis strains isolated from hospitals nationwide, recovered between April 1998 and March 2018 in Japan, to seven antibiotics. As a result, we demonstrated, for the first time, that the isolates remained highly susceptible to ceftriaxone, meropenem, azithromycin, ciprofloxacin, chloramphenicol, and rifampin, but not to penicillin. We then characterized the genetic relatedness of six penicillin- and/or ciprofloxacin-resistant isolates obtained in this study with global 112 genomes using core-genome phylogenetic analysis. These results provide the first evidence that invasive lineages such as a penicillin-resistant serogroup W, sequence type (ST)-11 clonal complex (CC), and a ciprofloxacin-resistant serogroup B/C, ST-4821 CC that is considered as a global threat, have been sporadically identified in Japan. Our findings highlight the need to monitor antibiotic resistance in clinical isolates of N. meningitidis, thereby preventing the spread of antibiotic-resistant invasive lineages and maintaining effective treatment for IMD patients and their close contacts. IMPORTANCE Although antibiotics such as penicillin and ceftriaxone can treat invasive meningococcal disease (IMD), the emergence and spread of antibiotic-resistant Neisseria meningitidis have become a global concern. To provide effective treatment, including chemoprophylaxis to IMD patients and their close contacts, we highlighted the importance of recognizing the antibiotic resistance and genetic features of N. meningitidis isolates.


Asunto(s)
Infecciones Meningocócicas , Neisseria meningitidis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Humanos , Japón/epidemiología , Infecciones Meningocócicas/tratamiento farmacológico , Infecciones Meningocócicas/epidemiología , Pruebas de Sensibilidad Microbiana , Neisseria meningitidis/genética , Penicilinas/farmacología , Penicilinas/uso terapéutico , Filogenia
10.
Appl Environ Microbiol ; 88(8): e0001922, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35380451

RESUMEN

Klebsiella pneumoniae carbapenemase (KPC) producers are an emerging threat to global health, and the hospital water environment is considered an important reservoir of these life-threatening bacteria. We characterized plasmids of KPC-2-producing Citrobacter freundii and Klebsiella variicola isolates recovered from hospital sewage in Japan. Antimicrobial susceptibility testing, whole-genome sequencing analysis, bacterial conjugation, and transformation experiments were performed for both KPC-2 producers. The blaKPC-2 gene was located on the Tn3 transposon-related region from an IncP-6 replicon plasmid that could not be transferred via conjugation. Compared to the blaKPC-2-encoding plasmid of the C. freundii isolate, alignment analysis of plasmids with blaKPC-2 showed that the blaKPC-2-encoding plasmid of the K. variicola isolate was a novel IncP-6/IncF-like hybrid plasmid containing a 75,218-bp insertion sequence composed of IncF-like plasmid conjugative transfer proteins. Carbapenem-resistant transformants harboring blaKPC-2 were obtained for both isolates. However, no IncF-like insertion region was found in the K. variicola donor plasmid of the transformant, suggesting that this IncF-like region is not readily functional for plasmid conjugative transfer and is maintained depending on the host cells. The findings on the KPC-2 producers and novel genetic content emphasize the key role of hospital sewage as a potential reservoir of pathogens and its linked dissemination of blaKPC-2 through the hospital water environment. Our results indicate that continuous monitoring for environmental emergence of antimicrobial-resistant bacteria might be needed to control the spread of these infectious bacteria. Moreover, it will help elucidate both the evolution and transmission pathways of these bacteria harboring antimicrobial resistance. IMPORTANCE Antimicrobial resistance is a significant problem for global health, and the hospital environment has been recognized as a reservoir of antimicrobial resistance. Here, we provide insight into the genomic features of blaKPC-2-harboring isolates of Citrobacter freundii and Klebsiella variicola obtained from hospital sewage in Japan. The findings of carbapenem-resistant bacteria containing this novel genetic context emphasize that hospital sewage could act as a potential reservoir of pathogens and cause the subsequent spread of blaKPC-2 via horizontal gene transfer in the hospital water environment. This indicates that serial monitoring for environmental bacteria possessing antimicrobial resistance may help us control the spread of infection and also lead to elucidating the evolution and transmission pathways of these bacteria.


Asunto(s)
Citrobacter freundii , Aguas del Alcantarillado , Antibacterianos , Carbapenémicos , Citrobacter freundii/genética , Hospitales , Japón , Klebsiella , Plásmidos/genética , Agua
11.
Sci Rep ; 12(1): 1843, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115628

RESUMEN

Recently, the emergence and rapid dissemination of extended-spectrum beta-lactamase (ESBL)-producing bacteria, particularly of the family Enterobacteriaceae, has posed serious healthcare challenges. Here, we determined the antimicrobial susceptibility and genetic characteristics of 164 Escherichia coli strains isolated from infected patients in two hospitals in Ghana. In total, 102 cefotaxime-resistant isolates (62.2%) were identified as ESBL-producers. Multilocus sequence typing of the ESBL-producers identified 20 different sequence types (STs) with ST131 (n = 25, 24.5%) as the dominant group. Other detected STs included ST410 (n = 21, 20.6%) and ST617 (n = 19, 18.6%). All identified ESBL-producers harbored blaCTX-M-14, blaCTX-M-15, or blaCTX-M-27, with blaCTX-M-15 (n = 96, 94.1%) being the most predominant ESBL allele. Further analysis showed that the immediate genetic environment around blaCTX-M-15 is conserved within blaCTX-M-15 containing strains. Five of the 25 ST131 isolates were clustered with clade A, one with sub-clade C1, and 19 with the dominant sub-clade C2. The results show that fluoroquinolone-resistant, blaCTX-M-14- and blaCTX- M-15-producing ESBL E. coli ST131 strains belonging to clade A and sub-clades C1 and C2 are disseminating in Ghanaian hospitals. To the best of our knowledge, this is the first report of the ST131 phylogeny in Ghana.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Escherichia coli/genética , beta-Lactamasas/genética , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/diagnóstico , Infecciones por Escherichia coli/tratamiento farmacológico , Proteínas de Escherichia coli/metabolismo , Genotipo , Ghana , Humanos , Pruebas de Sensibilidad Microbiana , Fenotipo , Filogenia , beta-Lactamasas/metabolismo
12.
Front Microbiol ; 12: 770130, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925277

RESUMEN

Extra-intestinal pathogenic Escherichia coli (ExPEC) is one of the world's leading causes of bloodstream infections with high mortality. Sequence type 410 (ST410) is an emerging ExPEC clone resistant to a wide range of antibiotics. In this study, we investigated the epidemiology of 21 ST410 E. coli isolates from two Ghanaian hospitals. We also investigated the isolates within a global context to provide further insight into the dissemination of this highly pathogenic clone. A phylogenetic tree of the 21 isolate genomes, along with 102 others from global collection, was constructed representing the ensuing clades and sub-clades of the ST: A/H53, B2/H24R, B3/H24Rx, and B4/H24RxC. The carbapenem-resistant sub-clade B4/H24RxC is reported to have emerged in the early 2000s when ST410 acquired an IncX3 plasmid carrying a bla OXA- 181 carbapenemase gene, and a second carbapenemase gene, bla NDM- 5, on a conserved IncFII plasmid in 2014. We identified, in this study, one bla OXA- 181-carrying isolate belonging to B4/H24RxC sub-lineage and one carrying bla NDM- 1 belonging to sub-lineage B3/H24Rx. The bla OXA- 181 gene was found on a 51kb IncX3 plasmid; pEc1079_3. The majority (12/21) of our Ghanaian isolates were clustered with international strains described by previous authors as closely related strains to B4/H24RxC. Six others were clustered among the ESBL-associated sub-lineage B3/H24Rx and three with the globally disseminated sub-lineage B4/H24RxC. The results show that this highly pathogenic clone is disseminated in Ghana and, given its ability to transmit between hosts, it poses a serious threat and should be monitored closely.

13.
Emerg Microbes Infect ; 10(1): 865-873, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33879019

RESUMEN

The emergence and spread of carbapenemase-producing bacteria are serious threats to public health. We characterized two OXA-181-producing Escherichia coli isolates from pediatric patients with diarrhea from Ghana. blaOXA-181 was localized on the self-conjugative IncX3-containing plasmid in the E. coli ST410 isolate, belonging to an emerging lineage, and an IncFIC(FII)-containing plasmid in E. coli ST940. The blaOXA-181-qnrS1 region was found on the IS26 composite transposon, which contained a 366-bp deletion in the region encoding the Rep A protein for the IncX3-containing plasmid. The IncFIC(FII) plasmid was novel and integrated with an approximately 39-kb IncX1 plasmid through conjugal transfer. Both plasmids clustered close to plasmids from Switzerland. To the best of our knowledge, this is the first report describing the presence of an IncX3 plasmid containing blaOXA-181 in strains closely related to the B4/H24RxC clade in Africa, suggesting its emergence and the need to strengthen antimicrobial resistance surveillance.


Asunto(s)
Antibacterianos/farmacología , Diarrea/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/efectos de los fármacos , beta-Lactamasas/genética , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Proteínas de Escherichia coli/genética , Ghana , Humanos , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma
14.
Jpn J Infect Dis ; 74(2): 115-121, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32863350

RESUMEN

Diarrheagenic Escherichia coli (DEC), an important agent of infectious diarrhea, is constantly evolving, making its periodic monitoring necessary. However, the DEC genotypes in Ghana remain uncharacterized. We focused on characterizing the molecular serotypes, virulence factors, multilocus sequence types, and the phylogenetic relatedness among different DEC pathotypes recovered from stool samples of pediatric patients with symptoms of diarrhea from the Western region of Ghana. We detected all five common DEC pathotypes, with the majority of the isolates being enterotoxigenic E. coli (ETEC) harboring the heat-labile enterotoxin gene. The DEC strains exhibited diverse serotypic identity with novel and previously reported outbreak strains. Sequence types (ST) ST38, ST316, and ST1722 were most prevalent, and clonal complex 10 (CC10) was the most common CC. A close evolutionary distance was observed among most of the isolates. Coli surface antigen 6 was the most prevalent (44%, n = 11) ETEC-specific colonization factor. Nearly all the isolates harbored lpfA, and the frequencies of other virulence genes such as pap and cnf1 were 7.9% and 18.4%, respectively. This study provides insights into the important and novel genotypes circulating in the Western region of Ghana that should be monitored for public health.


Asunto(s)
Diarrea/microbiología , Infecciones por Escherichia coli/microbiología , Escherichia coli/genética , Escherichia coli/patogenicidad , Preescolar , ADN Bacteriano , Diarrea/epidemiología , Escherichia coli Enteropatógena/genética , Escherichia coli Enterotoxigénica/genética , Enterotoxinas/genética , Escherichia coli/aislamiento & purificación , Infecciones por Escherichia coli/epidemiología , Genes Bacterianos , Genotipo , Ghana/epidemiología , Humanos , Lactante , Tipificación de Secuencias Multilocus , Filogenia , Virulencia , Factores de Virulencia/genética
15.
Front Microbiol ; 11: 587398, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281784

RESUMEN

Multidrug resistance, especially carbapenem resistance in Acinetobacter bacteria is a global healthcare concern. However, available data on the phenotypic and genotypic characteristics of Acinetobacter isolates from West Africa, including Ghana is scanty. Our aim was to investigate the antibiotic resistance profile and genotypic characteristics of Acinetobacter isolates from Ghana and to characterize carbapenemase producers using whole-genome sequencing (WGS). A total of 36 Acinetobacter isolates collected at three hospitals in Ghana between 2016 and 2017 were analyzed. MICs were determined by commercial antibiotic plates. Acinetobacter baumannii MLST was determined using the Pasteur scheme. WGS of OXA-carbapenemase producers was performed using short- and long-read sequencing strategies. The resistance rate was highest for trimethoprim/sulfamethoxazole (n = 22; 61%). Six (16.7%) and eight (22.2%) isolates were resistant to ceftazidime and colistin, respectively. Two (5.6%) isolates were resistant and one (2.8%) isolate had intermediate sensitivity to three carbapenems. Fifteen STs were identified in 24 A. baumannii isolates including six new STs (ST1467 ∼ ST1472). ST78 was the predominant (n = 6) followed by ST1469 (n = 3). Four carbapenemase-producing A. baumannii isolates also were identified. Isogenic ST103 isolates Ab-B004d-c and Ab-D10a-a harbored bla OXA- 23 within Tn2007 on identical plasmids, pAb-B004d-c_3, and pAb-D10a-a_3. ST1472 isolate Ab-C102 and ST107 isolate Ab-C63 carried bla OXA- 58 and bla OXA- 420, a rare bla OXA- 58 variant, respectively, within novel genetic contexts. Our results show that A. baumannii isolates of diverse and unique genotypes, including OXA-carbapenemase producers, are circulating in Ghana highlighting the need for a wider surveillance of antimicrobial resistance.

16.
Gut Pathog ; 11: 54, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31700548

RESUMEN

BACKGROUND: Clostridioides difficile ribotype (RT) 019/sequence type (ST) 67 strains belong to a hypervirulent lineage closely related to RT027/ST1; however, limited data are available for hypervirulent clade 2 lineages in Japan. Herein, we report the draft genome of a C. difficile strain B18-123 belonging to clade 2, RT019/ST67 for the first time in Japan. RESULTS: The pathogenicity locus carried by B18-123 (19.6 kb) showed higher homology (97.29% nucleotide identity) with strain R20291 (RT027/ST1) than the reference strain 630 (RT012/ST54), and B18-123 harbored 8-nucleotide substitutions in tcdC. However, it did not contain an 18-base pair (bp) deletion or a single-bp deletion at position 117 in tcdC, which was identified in the previous strain R20291. A cytotoxicity assay revealed similar cytotoxicity levels between strains B18-123 and ATCC BAA-1870 (RT027/ST1). The B18-123 strain was found to be susceptible to metronidazole and vancomycin. CONCLUSION: Our findings contribute to the further understanding of the characteristics of hypervirulent clade 2 including RT019/ST67 lineages.

17.
PLoS One ; 13(12): e0209623, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30576382

RESUMEN

Global dissemination of New Delhi metallo-ß-lactamase (NDM)-producing bacteria has become a major health threat. However, there are few reports regarding the identification and characterisation of NDM-producing bacteria from West Africa, including Ghana. An Escherichia coli strain with resistance to meropenem was isolated from the Tamale Teaching Hospital in Ghana. Its identification and determination of antibiotic susceptibility profile were carried out using commercial systems. The antibiotic resistance mechanism was analysed by phenotypic detection kits, PCR, and DNA sequencing. Conjugation experiments, S1 nuclease pulsed field gel electrophoresis, and Southern blotting were performed. Finally, the NDM-1-harbouring plasmid was characterised using next-generation sequencing and phylogenetic analysis. The meropenem-resistant Escherichia coli strain EC2189 harboured blaNDM-1 and belonged to sequence type 410. blaNDM-1 was located on the IncHI type transferrable plasmid p2189-NDM (248,807 bp long), which co-carried multiple resistance genes, such as blaCTX-M-15, aadA1, aac(6')-Ib, sul3, dfrA12, and cmlA1. p2189-NDM phylogenetically differed from previously identified blaNDM-1-positive IncHI type plasmids. A truncated Tn125 containing blaNDM-1 was bracketed by an ISSm-1-like insertion sequence upstream and by a site-specific integrase downstream. To the best of our knowledge, we have, for the first time identified and molecularly characterised an NDM-1-producing Enterobacteriaceae strain in Ghana with blaNDM-1 that had a novel genetic structure. Our findings indicate a possibility of NDM-1 dissemination in Ghana and underscore the need for constant monitoring of carbapenemase-producing bacteria.


Asunto(s)
Infecciones por Enterobacteriaceae/genética , Escherichia coli/genética , Plásmidos/genética , beta-Lactamasas/genética , Antibacterianos/efectos adversos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Humanos , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Filogenia
18.
Front Microbiol ; 8: 1906, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29056927

RESUMEN

Objectives:Staphylococcus aureus infections in burn patients can lead to serious complications and death. The frequency of S. aureus infection is high in low- and middle-income countries presumably due to limited resources, misuse of antibiotics and poor infection control. The objective of the present study was to apply population genomics to precisely define, for the first time, the transmission of antibiotic resistant S. aureus in a resource-limited setting in sub-Saharan Africa. Methods:Staphylococcus aureus surveillance was performed amongst burn patients and healthcare workers during a 7-months survey within the burn unit of the Korle Bu Teaching Hospital in Ghana. Results: Sixty-six S. aureus isolates (59 colonizing and 7 clinical) were obtained from 31 patients and 10 healthcare workers. Twenty-one of these isolates were ST250-IV methicillin-resistant S. aureus (MRSA). Notably, 25 (81%) of the 31 patients carried or were infected with S. aureus within 24 h of admission. Genome comparisons revealed six distinct S. aureus clones circulating in the burn unit, and demonstrated multiple transmission events between patients and healthcare workers. Further, the collected S. aureus isolates exhibited a wide range of genotypic resistances to antibiotics, including trimethoprim (21%), aminoglycosides (33%), oxacillin (33%), chloramphenicol (50%), tetracycline (59%) and fluoroquinolones (100%). Conclusion: Population genomics uncovered multiple transmission events of S. aureus, especially MRSA, within the investigated burn unit. Our findings highlight lapses in infection control and prevention, and underscore the great importance of active surveillance to protect burn victims against multi-drug resistant pathogens in resource-limited settings.

19.
PLoS One ; 12(7): e0181072, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28704546

RESUMEN

BACKGROUND: In developing countries, hospitalized burn victims are at high risk of nosocomial infections caused by Staphylococcus aureus. Risk factors include poor infection control practices, prolonged hospitalisation and limited capacity for laboratory microbiological analyses. These problems are compounded by widespread use of antibiotics that drives the spread of multi-drug resistant bacteria. METHODS: During the study period (November 2014-June 2015), nasal and invasive S. aureus isolates were collected consecutively from patients and healthcare workers (HCWs) within the burn unit of the Reconstructive Plastic Surgery and Burn Center of Korle Bu Teaching Hospital in Ghana. Antibiotic prescription, antibiotic susceptibility and bacterial typing were used to assess antibiotic pressure, antibiotic resistance, and possible transmission events among patients and HCWs. RESULTS: Eighty S. aureus isolates were obtained from 37 of the 62 included burn patients and 13 of the 29 HCWs. At admission, 50% of patients carried or were infected with S. aureus including methicillin resistant S. aureus (MRSA). Antibiotic use per 100 days of hospitalization was high (91.2 days), indicating high selective pressure for resistant pathogens. MRSA isolates obtained from 11 patients and one HCW belonged to the same spa-type t928 and multi-locus sequence type 250, implying possible transmission events. A mortality rate of 24% was recorded over the time of admission in the burn unit. CONCLUSION: This study revealed a high potential for MRSA outbreaks and emergence of resistant pathogens amongst burn patients due to lack of patient screening and extended empirical use of antibiotics. Our observations underscore the need to implement a system of antibiotic stewardship and infection prevention where microbiological diagnostics results are made available to physicians for timely and appropriate patient treatment.


Asunto(s)
Portador Sano/microbiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Infecciones Estafilocócicas/epidemiología , Adolescente , Adulto , Técnicas de Tipificación Bacteriana , Unidades de Quemados/estadística & datos numéricos , Niño , Preescolar , Infección Hospitalaria , Femenino , Ghana/epidemiología , Personal de Salud/estadística & datos numéricos , Mortalidad Hospitalaria , Humanos , Masculino , Infecciones Estafilocócicas/microbiología , Centros de Atención Terciaria , Adulto Joven
20.
Int J Med Microbiol ; 307(4-5): 223-232, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28442219

RESUMEN

Buruli ulcer (BU) is a necrotizing infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. BU wounds may also be colonized with other microorganisms including Staphylococcus aureus. This study aimed to characterize the virulence factors of S. aureus isolated from BU patients. Previously sequenced genomes of 21 S. aureus isolates from BU patients were screened for the presence of virulence genes. The results show that all S. aureus isolates harbored on their core genomes genes for known virulence factors like α-hemolysin, and the α- and ß-phenol soluble modulins. Besides the core genome virulence genes, mobile genetic elements (MGEs), i.e. prophages, genomic islands, pathogenicity islands and a Staphylococcal cassette chromosome (SCC) were found to carry different combinations of virulence factors, among them genes that are known to encode factors that promote immune evasion, superantigens and Panton-Valentine Leucocidin. The present observations imply that the S. aureus isolates from BU patients harbor a diverse repertoire of virulence genes that may enhance bacterial survival and persistence in the wound environment and potentially contribute to delayed wound healing.


Asunto(s)
Úlcera de Buruli/diagnóstico , Úlcera de Buruli/microbiología , Genes Bacterianos , Staphylococcus aureus/patogenicidad , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , ADN Bacteriano/genética , Exotoxinas/genética , Islas Genómicas , Proteínas Hemolisinas/genética , Humanos , Leucocidinas/genética , Profagos/genética , Análisis de Secuencia de ADN , Infecciones Estafilocócicas/diagnóstico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/aislamiento & purificación , Superantígenos/genética , Factores de Virulencia/genética , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA