Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Sci Data ; 11(1): 718, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956046

RESUMEN

Handwritten signatures in biometric authentication leverage unique individual characteristics for identification, offering high specificity through dynamic and static properties. However, this modality faces significant challenges from sophisticated forgery attempts, underscoring the need for enhanced security measures in common applications. To address forgery in signature-based biometric systems, integrating a forgery-resistant modality, namely, noninvasive electroencephalography (EEG), which captures unique brain activity patterns, can significantly enhance system robustness by leveraging multimodality's strengths. By combining EEG, a physiological modality, with handwritten signatures, a behavioral modality, our approach capitalizes on the strengths of both, significantly fortifying the robustness of biometric systems through this multimodal integration. In addition, EEG's resistance to replication offers a high-security level, making it a robust addition to user identification and verification. This study presents a new multimodal SignEEG v1.0 dataset based on EEG and hand-drawn signatures from 70 subjects. EEG signals and hand-drawn signatures have been collected with Emotiv Insight and Wacom One sensors, respectively. The multimodal data consists of three paradigms based on mental, & motor imagery, and physical execution: i) thinking of the signature's image, (ii) drawing the signature mentally, and (iii) drawing a signature physically. Extensive experiments have been conducted to establish a baseline with machine learning classifiers. The results demonstrate that multimodality in biometric systems significantly enhances robustness, achieving high reliability even with limited sample sizes. We release the raw, pre-processed data and easy-to-follow implementation details.


Asunto(s)
Electroencefalografía , Humanos , Escritura Manual , Identificación Biométrica/métodos , Biometría
2.
Environ Sci Pollut Res Int ; 31(28): 41182-41196, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847949

RESUMEN

Assessment of water availability in sub-humid regions is important due to distinct climatic and environmental conditions. In this study, Soil and Water Assessment Tool (SWAT) and Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) models have been assessed in simulating streamflows in the sub-humid tropical Kabini basin in Kerala, India, spanning 1260 km2. Calibration and validation utilized daily weather data from 1997 to 2015 from the Muthankera gauging station. The study investigated the impact of routing methods on runoff simulation in the ArcSWAT, exploring Muskingum and Variable Storage methods. Evaluation metrics encompassed Nash-Sutcliffe Efïciency (NSE), Coefficient of Determination (R2), Percent bias (PBIAS), RMSE-observations standard deviation ratio (RSR), and Peak Percent Threshold Statistics (PPTS) approach for high-flow values. The result indicates that HEC-HMS outperforms SWAT concerning R2 and NSE values during daily calibration and validation. Monthly simulations showed HEC-HMS closely aligning with SWAT (Variable storage), outperforming SWAT (Muskingum). The PPTS approach proved effective in simulating high-flow values. Both models exhibited proficiency in streamflow analysis within the study area, promising predictive potential for future hydrological studies in sub-humid regions.


Asunto(s)
Hidrología , India , Modelos Teóricos , Clima Tropical , Ríos , Movimientos del Agua , Monitoreo del Ambiente/métodos
4.
Protein Pept Lett ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38910420

RESUMEN

Malaria caused by Plasmodium falciparum (Pf) is an illness that contributes significantly to the global health burden. Pf makes significant alterations to the host cell to meet its metabolic demands and escape the immune response of the host. These include the export of a large number of parasite proteins to the infected Red Blood Cells (iRBC). Variable Surface Antigens (VSAs), which are highly polymorphic protein families with important roles in immune evasion, form an important component of the exported proteins. A total of five protein families constitute the VSAs, viz. PfEMP1 (Pf erythrocyte membrane protein 1), RIFIN (repetitive interspersed family), STEVOR (sub-telomeric open reading frame), SURFIN (surface-associated interspersed gene family), and PfMC-2TM (Pf Maurer's cleft two transmembrane). With orthologues present in various simian-infecting species, VSAs take up a variety of domain topologies and organizational structures while exhibiting differential expressions throughout the parasite life cycle. Their expression varies across clinical isolates and laboratory strains, which suggests their crucial role in host cell survival and defense. Members of VSAs are reported to contribute significantly to disease pathogenesis through immune evasion processes like cytoadherence, iRBC sequestration in the host vasculature, rosetting, reduced erythrocyte deformability, and direct immunosuppression. In this study, we have gathered information on various aspects of VSAs, like their orthologues, domain architecture, surface topology, functions and interactions, and three-dimensional structures, while emphasizing discoveries in the field. Considering the vast repertoire of Plasmodial VSAs with new emergent functions, a lot remains unknown about these families and, hence, malaria biology.

5.
Chem Sci ; 15(23): 8775-8785, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873075

RESUMEN

Controlling chemical functionalization and achieving stable electrode-molecule interfaces for high-performance electrochemical energy storage applications remain challenging tasks. Herein, we present a simple, controllable, scalable, and versatile electrochemical modification approach of graphite rods (GRs) extracted from low-cost Eveready cells that were covalently modified with anthracene oligomers. The anthracene oligomers with a total layer thickness of ∼24 nm on the GR electrode yield a remarkable specific capacitance of ∼670 F g-1 with good galvanostatic charge-discharge cycling stability (10 000) recorded in 1 M H2SO4 electrolyte. Such a boost in capacitance is attributed mainly to two contributions: (i) an electrical double-layer at the anthracene oligomer/GR/electrolyte interfaces, and (ii) the proton-coupled electron transfer (PCET) reaction, which ensures a substantial faradaic contribution to the total capacitance. Due to the higher conductivity of the anthracene films, it possesses more azo groups (-N[double bond, length as m-dash]N-) during the electrochemical growth of the oligomer films compared to pyrene and naphthalene oligomers, which is key to PCET reactions. AC-based electrical studies unravel the in-depth charge interfacial electrical behavior of anthracene-grafted electrodes. Asymmetrical solid-state supercapacitor devices were made using anthracene-modified biomass-derived porous carbon, which showed improved performance with a specific capacitance of ∼155 F g-1 at 2 A g-1 with an energy density of 5.8 W h kg-1 at a high-power density of 2010 W kg-1 and powered LED lighting for a longer period. The present work provides a promising metal-free approach in developing organic thin-film hybrid capacitors.

6.
Chem Asian J ; : e202400138, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733617

RESUMEN

The aminotroponiminate (ATI) ligand stabilized germylene cation [(i-Bu)2ATIGe][B(C6F5)4] (2) is found to be an efficient low-valent main-group catalyst for the cyanosilylation of aldehydes and ketones (ATI = aminotroponiminate). It was synthesized by reacting [(i-Bu)2ATIGeCl] (1) with Na[B(C6F5)4]. The catalytic cyanosilylation of diverse aliphatic and aromatic carbonyl compounds (aldehydes and ketones) using 0.075-0.75 mol% of compound 2 was completed within 5-45 min. The catalytic efficiency seen with aliphatic aldehydes was around 15,800 h-1, making compound 2 a capable low-valent main-group catalyst for the aldehyde and ketone cyanosilylation reactions.

7.
J Chem Ecol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637418

RESUMEN

Scirpophaga incertulas Walker (Lepidoptera: Crambidae, yellow stem borer, YSB) is a monophagous insect pest that causes significant yield loss in rice (Oryza staiva L.). Semiochemical based pest management is being sought as an alternate to chemical pesticides to reduce pesticide footprints. We hypothesized differential release of volatiles from host rice and two companion non-host weeds, Echinochloa colona and Echinochloa crus-galli could be responsible for oviposition and biology of YSB and these chemicals could be used for YSB management. Number of eggs laid, and number of larvae hatched were significantly higher in rice plant as compared to weeds. YSB could only form dead hearts in rice plants. YSB significantly preferred host-plant volatiles compared to the non-host plants both in choice and no-choice tests in an Y-tube olfactometer. 2-Hexenal, hexanal, 2,4-hexadienal, benzaldehyde, nonanal, methyl salicylate and decanal were found in the leaf volatolomes of both the host and non-host plants in HS-SPME-GC-MS (Headspace-Solid phase micro extraction-Gas chromatography-Mass spectrometer). Pentene-3-one, 2-pentyl furan, 2,4-heptadienal, 2-octenal, 2-octenol and menthol were present only in the non-host plants. Fourteen rice unique compounds were also detected. The built-in PCA (Principal Component Analysis) and PLS-DA (Partial least squares-discriminant analysis) analysis in the MS-DIAL tool showed that the volatiles emitted from TN1 formed a cluster distinct from Echinochloa spp. and 2-octenal was identified as a unique compound. Olfactometer bioassays using synthetic compounds showed that rice unique compounds, like xylene, hexanal served as attractants whereas non-host unique compounds, like 2-pentylfuran, 2-octenal acted as repellent. The results indicate that the rice unique compounds xylene, hexanal along with other volatile compounds could be responsible for higher preference of YSB towards rice plants. Similarly, the non-host unique compounds 2-pentylfuran, 2-octenal could possibly be responsible for lower preference and defence against YSB. These compounds could be utilised for devising traps for YSB monitoring and management.

9.
Environ Sci Pollut Res Int ; 31(20): 29415-29433, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575821

RESUMEN

Aqueous fluoride ( F - ) pollution is a global threat to potable water security. The present research envisions the development of novel adsorbents from indigenous Limonia acidissima L. (fruit pericarp) for effective aqueous defluoridation. The adsorbents were characterized using instrumental analysis, e.g., TGA-DTA, ATR-FTIR, SEM-EDS, and XRD. The batch-mode study was performed to investigate the influence of experimental variables. The artificial neural network (ANN) model was employed to validate the adsorption. The dataset was fed to a backpropagation learning algorithm of the ANN (BPNN) architecture. The four-ten-one neural network model was considered to be functioning correctly with an absolute-relative-percentage error of 0.633 throughout the learning period. The results easily fit the linearly transformed Langmuir isotherm model with a correlation coefficient ( R 2 ) > 0.997. The maximum F - removal efficiency was found to be 80.8 mg/g at the optimum experimental condition of pH 7 and a dosage of 6 g/L at 30 min. The ANN model and experimental data provided a high degree of correlation ( R 2 = 0.9964), signifying the accuracy of the model in validating the adsorption experiments. The effects of interfering ions were studied with real F - water. The pseudo-second-order kinetic model showed a good fit to the equilibrium dataset. The performance of the adsorbent was also found satisfactory with field samples and can be considered a potential adsorbent for aqueous defluoridation.


Asunto(s)
Fluoruros , Redes Neurales de la Computación , Contaminantes Químicos del Agua , Purificación del Agua , Fluoruros/química , Adsorción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Cinética , Agua/química
11.
Drug Discov Today ; 29(4): 103945, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460568

RESUMEN

Design-Make-Test-Analyse (DMTA) is the discovery cycle through which molecules are designed, synthesised, and assayed to produce data that in turn are analysed to inform the next iteration. The process is repeated until viable drug candidates are identified, often requiring many cycles before reaching a sweet spot. The advent of artificial intelligence (AI) and cloud computing presents an opportunity to innovate drug discovery to reduce the number of cycles needed to yield a candidate. Here, we present the Predictive Insight Platform (PIP), a cloud-native modelling platform developed at AstraZeneca. The impact of PIP in each step of DMTA, as well as its architecture, integration, and usage, are discussed and used to provide insights into the future of drug discovery.


Asunto(s)
Inteligencia Artificial , Bioensayo , Descubrimiento de Drogas
12.
Comput Biol Med ; 170: 108096, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38320340

RESUMEN

The development of automated methods for analyzing medical images of colon cancer is one of the main research fields. A colonoscopy is a medical treatment that enables a doctor to look for any abnormalities like polyps, cancer, or inflammatory tissue inside the colon and rectum. It falls under the category of gastrointestinal illnesses, and it claims the lives of almost two million people worldwide. Video endoscopy is an advanced medical imaging approach to diagnose gastrointestinal disorders such as inflammatory bowel, ulcerative colitis, esophagitis, and polyps. Medical video endoscopy generates several images, which must be reviewed by specialists. The difficulty of manual diagnosis has sparked research towards computer-aided techniques that can quickly and reliably diagnose all generated images. The proposed methodology establishes a framework for diagnosing coloscopy diseases. Endoscopists can lower the risk of polyps turning into cancer during colonoscopies by using more accurate computer-assisted polyp detection and segmentation. With the aim of creating a model that can automatically distinguish polyps from images, we presented a modified DeeplabV3+ model in this study to carry out segmentation tasks successfully and efficiently. The framework's encoder uses a pre-trained dilated convolutional residual network for optimal feature map resolution. The robustness of the modified model is tested against state-of-the-art segmentation approaches. In this work, we employed two publicly available datasets, CVC-Clinic DB and Kvasir-SEG, and obtained Dice similarity coefficients of 0.97 and 0.95, respectively. The results show that the improved DeeplabV3+ model improves segmentation efficiency and effectiveness in both software and hardware with only minor changes.


Asunto(s)
Colonoscopía , Neoplasias , Humanos , Pelvis , Procesamiento de Imagen Asistido por Computador
13.
ACS Appl Mater Interfaces ; 16(8): 10238-10250, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38372639

RESUMEN

The electrochemical conversion of oxygen holds great promise in the development of sustainable energy for various applications, such as water electrolysis, regenerative fuel cells, and rechargeable metal-air batteries. Oxygen electrocatalysts are needed that are both highly efficient and affordable, since they can serve as alternatives to costly precious-metal-based catalysts. This aspect is particularly significant for their practical implementation on a large scale in the future. Herein, highly porous polyhedron-entrapped metal-organic framework (MOF)-assisted CoTe2/MnTe2 heterostructure one-dimensional nanorods were initially synthesized using a simple hydrothermal strategy and then transformed into ZIF-67 followed by tellurization which was used as a bifunctional electrocatalyst for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The designed MOF CoTe2/MnTe2 nanorod electrocatalyst exhibited superior activity for both OER (η = 220 mV@ 10 mA cm-2) and ORR (E1/2 = 0.81 V vs RHE) and outstanding stability. The exceptional achievement could be primarily credited to the porous structure, interconnected designs, and deliberately created deficiencies that enhanced the electrocatalytic activity for the OER/ORR. This improvement was predominantly due to the enhanced electrochemical surface area and charge transfer inherent in the materials. Therefore, this simple and cost-effective method can be used to produce highly active bifunctional oxygen electrocatalysts.

14.
J Plant Res ; 137(3): 463-484, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38337083

RESUMEN

Floral biochemistry and stress physiology is an underexplored aspect of mangroves, which should be investigated as part of preservation and restoration efforts. A thriving true mangrove tree (Bruguiera gymnorrhiza (L.) Lamk.) and a threatened mangrove-associate species (Heritiera fomes Buch. Ham.) were studied in the Sundarban region of India for seasonal variations in floral odours, non-volatile phytochemicals, antioxidant enzyme activities, and surface water chemistry in surrounding habitat. Both species were found to exhibit significant differences in floral volatilomes, protein contents, antioxidant enzyme activities, total flavonoids, and total phenolic contents between spring and autumn blooms. The bird-pollinated flowers of B. gymnorrhiza also showed considerable seasonal differences in floral anthocyanin and proline contents, indicating vulnerability of the post-anthesis open flowers to environmental factors. Contrarily to previous findings, B. gymnorrhiza floral bouquet appeared to be enriched in various classes of volatiles - dominated by sulphurous compounds in bud stage and terpenoids in open stage. Floral anthocyanins, contributing to the striking colouration of the calyx, were found to comprise cyanidin and delphinidin derivatives. Other glycosides of cyanidin and delphinidin were detected in H. fomes flowers, contributing to visual guides to potential food rewards for pollinating insects. Floral tissue in H. fomes was found to be protected by densely overlapping layers of stellate trichomes containing sesquiterpenoids as phytoprotectants. Comparison of the two floral species suggested that H. fomes flowering is optimized to oligohaline (but not freshwater) vernal conditions; whereas B. gymnorrhiza blooms are adapted for biologically enriched (including abundant herbivores and microbial growth), mesohaline forest habitats.


Asunto(s)
Ecosistema , Flores , Odorantes , Rhizophoraceae , Flores/fisiología , Rhizophoraceae/fisiología , Odorantes/análisis , India , Antocianinas/metabolismo , Antocianinas/análisis , Humedales , Estrés Fisiológico , Estaciones del Año , Polinización , Animales , Flavonoides/metabolismo , Flavonoides/análisis , Antioxidantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Fitoquímicos/metabolismo , Fitoquímicos/química , Fenoles/metabolismo , Fenoles/análisis , Prolina/metabolismo , Prolina/análisis
15.
Curr Protein Pept Sci ; 25(6): 427-437, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38409726

RESUMEN

The apicomplexan pathogenic parasite 'Plasmodium falciparum' (Pf) is responsible for most of the malaria related mortality. It resides in and refurbishes the infected red blood cells (iRBCs) for its own survival and to suffice its metabolic needs. Remodeling of host erythrocytes involves alteration of physical and biochemical properties of the membrane and genesis of new parasite induced structures within the iRBCs. The generated structures include knobs and solute ion channels on the erythrocyte surface and specialized organelles i.e. Maurer's clefts (MCs) in the iRBC cytosol. The above processes are mediated by exporting a large repertoire of proteins to the host cell, most of which are transported via MCs, the sorting stations in parasitized erythrocytes. Information about MC biogenesis and the molecules involved in maintaining MC architecture remains incompletely elucidated. Here, we have compiled a list of experimentally known MC resident proteins, several of which have roles in maintaining its architecture and function. Our short review covers available data on the domain organization, orthologues, topology and specific roles of these proteins. We highlight the current knowledge gaps in our understanding of MCs as crucial organelles involved in parasite biology and disease pathogenesis.


Asunto(s)
Eritrocitos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/metabolismo , Humanos , Eritrocitos/parasitología , Eritrocitos/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Malaria Falciparum/parasitología , Malaria Falciparum/metabolismo , Animales , Interacciones Huésped-Parásitos , Transporte de Proteínas , Membrana Eritrocítica/parasitología , Membrana Eritrocítica/metabolismo
16.
Prep Biochem Biotechnol ; : 1-14, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170207

RESUMEN

In growing plant population, effect of stress is a perturb issue affecting its physiological, biochemical, yield loss and developmental growth. Protein-L-isoaspartate-O-methyltransferase (PIMT) is a broadly distributed protein repair enzyme which actuate under stressful environment or aging. Stress can mediate damage converting protein bound aspartate (Asp) residues to isoaspartate (iso-Asp). This spontaneous and deleterious conversion occurs at an elevated state of stress and aging. Iso-Asp formation is associated with protein inactivation and compromised cellular survival. PIMT can convert iso-Asp back to Asp, thus repairing and contributing to cellular survival. The present work describes the isolation, cloning, sequencing and expression of PIMT genes of Carica papaya (Cp pimt) and Ricinus communis (Rc pimt) Using gene specific primers, both the pimts were amplified from their respective cDNAs and subsequently cloned in prokaryotic expression vector pProEXHTa. BL21(DE3) strain of E. coli cells were used as expression host. The expression kinetics of both the PIMTs were studied with various concentrations of IPTG and at different time points. Finally, the PIMT supplemented BL21(DE3) cells were evaluated against different stresses in comparison to their counterparts with the empty vector control.

17.
Angew Chem Int Ed Engl ; 63(15): e202317413, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38252076

RESUMEN

Metal-organic frameworks (MOFs) are a specific class of hybrid, crystalline, nano-porous materials made of metal-ion-based 'nodes' and organic linkers. Most of the studies on MOFs largely focused on porosity, chemical and structural diversity, gas sorption, sensing, drug delivery, catalysis, and separation applications. In contrast, much less reports paid attention to understanding and tuning the electrical properties of MOFs. Poor electrical conductivity of MOFs (~10-7-10-10 S cm-1), reported in earlier studies, impeded their applications in electronics, optoelectronics, and renewable energy storage. To overcome this drawback, the MOF community has adopted several intriguing strategies for electronic applications. The present review focuses on creatively designed bulk MOFs and surface-anchored MOFs (SURMOFs) with different metal nodes (from transition metals to lanthanides), ligand functionalities, and doping entities, allowing tuning and enhancement of electrical conductivity. Diverse platforms for MOFs-based electronic device fabrications, conductivity measurements, and underlying charge transport mechanisms are also addressed. Overall, the review highlights the pros and cons of MOFs-based electronics (MOFtronics), followed by an analysis of the future directions of research, including optimization of the MOF compositions, heterostructures, electrical contacts, device stacking, and further relevant options which can be of interest for MOF researchers and result in improved devices performance.

18.
J Food Sci Technol ; 61(1): 62-68, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192716

RESUMEN

This paper presents the results of two proficiency testing (PT) rounds conducted by the Export Inspection Agency (EIA) Chennai laboratory in 2021 for food testing laboratories in India. The PT program was designed in accordance with ISO/TS 22117, a standard for proficiency testing in food microbiology, and targeted Listeria monocytogenes and Salmonella spp as the organisms of focus. The samples were found to be stable and recoverable during the analysis, and all PT sample packages were delivered to participant laboratories in good condition. The participant laboratories reported high sensitivity rates of 100% for PT round 061021 M and 96.49% for PT round 050721 M. The accuracy rate in PT round 061021 M was 91.89% and 92.10% in case of PT round 050721 M. However, there were some false positive and false negative results reported by some participant laboratories in both PT rounds, which may have been caused by operational errors or inconsistencies in analysis. During the PT round 061021 M, out of a total of 38 participant laboratories, five laboratories reported false positive results and one laboratory reported a false negative result. Similarly, during the PT round 050721 M, six laboratories reported false positive results which resulted in their results being deemed unsatisfactory.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38231055

RESUMEN

INTRODUCTION: MKT-077 and its derivatives are rhodacyanine inhibitors that hold po-tential in the treatment of cancer, neurodegenerative diseases and malaria. These allosteric drugs act by inhibiting the ATPase action of heat shock proteins of 70kDa (HSP70). MKT-077 accu-mulates in the mitochondria and displays differential activity against HSP70 homologs. METHODS: The four Plasmodium falciparum HSP70s (PfHSP70) are present in various subcellu-lar locations to perform distinct functions. In the present study, we have used bioinformatics tools to understand the interaction of MKT-077 at the ADP and HEW (2-amino 4 bro-mopyridine) binding sites on PfHSP70s. Our molecular docking experiments predict that the mi-tochondrial and endoplasmic reticulum PfHSP70 homologs are likely to bind MKT-077 with higher affinities at their ADP binding sites. RESULTS: Binding analysis indicates that the nature of the identified interactions is primarily hy-drophobic. We have also identified specific residues of PfHSP70s that are involved in interacting with the ligand. CONCLUSION: Information obtained in this study may form the foundation for the design and de-velopment of MKT-077-based drugs against malaria.

20.
J Biomol Struct Dyn ; 42(2): 598-614, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36995189

RESUMEN

The hepatitis A virus (HAV), which causes hepatitis A, is a contagious liver ailment. The infections are not specifically treated by any medications. Therefore, the development of less harmful, more effective and cost-effective antiviral agents are necessary. The present work highlighted the in-silico activity of phytocompounds from tinospora cordifolia against HAV. The binding interaction of HAV with the phytocompounds was analyzed through molecular docking. Molecular docking revealed that chasmanthin, malabarolide, menispermacide, tinosporaside, and tinosporinone compounds bind with HAV more efficiently than other compounds. Further evaluation using 100 ns molecular dynamics simulation, MM/GBSA and free energy landscape indicated that all phytocompounds studied here were found to be most promising drug candidate against hepatitis A virus. Our computational study will encourage promoting in further investigation for in vitro and in vivo clinical trials.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus de la Hepatitis A , Tinospora , Simulación del Acoplamiento Molecular , Temperatura , Simulación de Dinámica Molecular , Fitoquímicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA