Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
3.
EMBO Mol Med ; 8(11): 1340-1359, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27737899

RESUMEN

Neutrophils generated by granulocyte colony-stimulating factor (GCSF) are functionally immature and, consequently, cannot effectively reduce infection and infection-related mortality in cancer chemotherapy-induced neutropenia (CCIN). Am80, a retinoic acid (RA) agonist that enhances granulocytic differentiation by selectively activating transcription factor RA receptor alpha (RARα), alternatively promotes RA-target gene expression. We found that in normal and malignant primary human hematopoietic specimens, Am80-GCSF combination coordinated proliferation with differentiation to develop complement receptor-3 (CR3)-dependent neutrophil innate immunity, through altering transcription of RA-target genes RARß2, C/EBPε, CD66, CD11b, and CD18 This led to generation of functional neutrophils capable of fighting infection, whereas neutralizing neutrophil innate immunity with anti-CD18 antibody abolished neutrophil bactericidal activities induced by Am80-GCSF Further, Am80-GCSF synergy was evaluated using six different dose-schedule-infection mouse CCIN models. The data demonstrated that during "emergency" granulopoiesis in CCIN mice undergoing transient systemic intravenous bacterial infection, Am80 effect on differentiating granulocytic precursors synergized with GCSF-dependent myeloid expansion, resulting in large amounts of functional neutrophils that reduced infection. Importantly, extensive survival tests covering a full cycle of mouse CCIN with perpetual systemic intravenous bacterial infection proved that without causing myeloid overexpansion, Am80-GCSF generated sufficient numbers of functional neutrophils that significantly reduced infection-related mortality in CCIN mice. These findings reveal a differential mechanism for generating functional neutrophils to reduce CCIN-associated infection and mortality, providing a rationale for future therapeutic approaches.


Asunto(s)
Antineoplásicos/efectos adversos , Bacteriemia/inmunología , Benzoatos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factores Inmunológicos/administración & dosificación , Neutropenia/terapia , Neutrófilos/inmunología , Tetrahidronaftalenos/administración & dosificación , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones , Neutropenia/inducido químicamente , Neutrófilos/fisiología , Análisis de Supervivencia
4.
J Infect Dis ; 214(7): 1092-104, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27456707

RESUMEN

Escherichia coli K1 meningitis continues to be a major threat to neonatal health. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with endothelial cell glycoprotein 96 (Ecgp96) in the blood-brain barrier to enter the central nervous system. Here we show that the interaction between OmpA and Ecgp96 downregulates peroxisome proliferator-activated receptor γ (PPAR-γ) and glucose transporter 1 (GLUT-1) levels in human brain microvascular endothelial cells, causing disruption of barrier integrity and inhibition of glucose uptake. The suppression of PPAR-γ and GLUT-1 by the bacteria in the brain microvessels of newborn mice causes extensive pathophysiology owing to interleukin 6 production. Pretreatment with partial or selective PPAR-γ agonists ameliorate the pathological outcomes of infection by suppressing interleukin 6 production in the brain. Thus, inhibition of PPAR-γ and GLUT-1 by E. coli K1 is a novel pathogenic mechanism in meningitis, and pharmacological upregulation of PPAR-γ and GLUT-1 levels may provide novel therapeutic avenues.


Asunto(s)
Barrera Hematoencefálica/patología , Regulación hacia Abajo , Transportador de Glucosa de Tipo 1/análisis , Enfermedades del Recién Nacido/patología , Meningitis por Escherichia coli/patología , PPAR gamma/análisis , Animales , Animales Recién Nacidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Humanos , Recién Nacido , Ratones , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo
5.
Virulence ; 7(7): 806-18, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27221788

RESUMEN

Macrophages are a permissive niche for E. coli K1 multiplication for which the interaction of the bacterial outer membrane protein A and its cognate receptor CD64 are critical. Using in vitro immunofluorescence and live microscopy with ex vivo macrophage cultures from RFP-Lifeact mice, we show that cytotoxic necrotizing factor 1 (CNF1) secreted by E. coli K1 sequesters cellular actin toward microspike formation, thereby limiting actin availability for OmpA-mediated bacterial invasion. Surprisingly, the observed effects of CNF1 occur despite the absence of 67-kDa laminin receptor in macrophages. Concomitantly, the CNF1 deletion mutant of E. coli K1 (Δcnf1) invades macrophages and the brains of newborn mice in greater numbers compared to wild-type. However, the Δcnf1 strain induces less severe pathology in the brain. These results suggest a novel role for CNF1 in limiting E. coli K1 entry into macrophages while exacerbating disease severity in the brains of newborn mice.


Asunto(s)
Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Macrófagos/microbiología , Meningitis por Escherichia coli/microbiología , Actinas , Animales , Animales Recién Nacidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/metabolismo , Encéfalo/microbiología , Encéfalo/patología , Células Cultivadas , Progresión de la Enfermedad , Escherichia coli/genética , Proteínas de Escherichia coli/inmunología , Proteínas de Escherichia coli/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Macrófagos/inmunología , Meningitis por Escherichia coli/inmunología , Ratones , Receptores de IgG/metabolismo , Eliminación de Secuencia
6.
Virulence ; 6(8): 777-86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26407066

RESUMEN

Neonatal meningitis Escherichia coli K1 (NMEC) are thought to be transmitted from mothers to newborns during delivery or by nosocomial infections. However, the source of E. coli K1 causing these infections is not clear. Avian pathogenic E. coli (APEC) have the potential to cause infection in humans while human E. coli have potential to cause colibacillosis in poultry, suggesting that these strains may lack host specificity. APEC strains are capable of causing meningitis in newborn rats; however, it is unclear whether these bacteria use similar mechanisms to that of NMEC to establish disease. Using four representative APEC and NMEC strains that belong to serotype O18, we demonstrate that these strains survive in human serum similar to that of the prototypic NMEC strain E44, a derivative of RS218. These bacteria also bind and enter both macrophages and human cerebral microvascular endothelial cells (HCMEC/D3) with similar frequency as that of E44. The amino acid sequences of the outer membrane protein A (OmpA), an important virulence factor in the pathogenesis of meningitis, are identical within these representative APEC and NMEC strains. Further, these strains also require FcγRI-α chain (CD64) and Ecgp96 as receptors for OmpA in macrophages and HCMEC/D3, respectively, to bind and enter these cells. APEC and NMEC strains induce meningitis in newborn mice with varying degree of pathology in the brains as assessed by neutrophil recruitment and neuronal apoptosis. Together, these results suggest that serotype O18 APEC strains utilize similar pathogenic mechanisms as those of NMEC strains in causing meningitis.


Asunto(s)
Infecciones por Escherichia coli/microbiología , Escherichia coli/patogenicidad , Meningitis por Escherichia coli/microbiología , Animales , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Secuencia de Bases , Escherichia coli/clasificación , Escherichia coli/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/inmunología , Infecciones por Escherichia coli/patología , Expresión Génica , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/patología , Meningitis por Escherichia coli/patología , Ratones , Ratones Endogámicos C57BL , Filogenia , Células RAW 264.7 , Receptores de IgG/inmunología , Análisis de Secuencia de ADN , Serogrupo , Virulencia
7.
J Biol Chem ; 289(45): 30937-49, 2014 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-25231998

RESUMEN

Neonatal meningitis, caused by Escherichia coli K1, is a serious central nervous system disease. We have established that macrophages serve as permissive niches for E. coli K1 to multiply in the host and for attaining a threshold level of bacterial load, which is a prerequisite for the onset of the disease. Here, we demonstrate experimentally that three N-glycans in FcγRIa interact with OmpA of E. coli K1 for binding to and entering the macrophages. Adoptive transfer of FcγRIa(-/-) bone marrow-derived macrophages transfected with FcγRIa into FcγRIa(-/-) newborn mice renders them susceptible to E. coli K1-induced meningitis. In contrast, mice that received bone marrow-derived macrophages transfected with FcγRIa in which N-glycosylation sites 1, 4, and 5 are mutated to alanines exhibit resistance to E. coli K1 infection. Our molecular dynamics and simulation studies predict that N-glycan 5 exhibits strong binding at the barrel site of OmpA formed by loops 3 and 4, whereas N-glycans 1 and 4 interact with loops 1, 3, and 4 of OmpA at tip regions. Molecular modeling data also suggest no role for the IgG binding site in the invasion process. In agreement, experimental mutations in IgG binding site had no effect on the E. coli K1 entry into macrophages in vitro or on the onset of meningitis in newborn mice. Together, this integration of experimental and computational studies reveals how the N-glycans in FcγRIa interact with the OmpA of E. coli K1 for inducing the disease pathogenesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Escherichia coli/metabolismo , Macrófagos/microbiología , Meningitis por Escherichia coli/microbiología , Polisacáridos/química , Receptores de IgG/química , Traslado Adoptivo , Animales , Animales Recién Nacidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Sitios de Unión , Línea Celular , Glicosilación , Macrófagos/metabolismo , Meningitis por Escherichia coli/genética , Ratones , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Transfección
8.
Microbes Infect ; 16(7): 540-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24932957

RESUMEN

Bacterial meningitis is a serious central nervous system infection and Escherichia coli K1 (E. coli K1) is one of the leading etiological agents that cause meningitis in neonates. Outer membrane protein A (OmpA) of E. coli K1 is a major virulence factor in the pathogenesis of meningitis, and interacts with human brain microvascular endothelial cells (HBMEC) to cross the blood-brain barrier. Using site-directed mutagenesis, we demonstrate that two N-glycosylation sites (NG1 and NG2) in the extracellular domain of OmpA receptor, Ecgp96 are critical for bacterial binding to HBMEC. E. coli K1 invasion assays using CHO-Lec1 cells that express truncated N-glycans, and sequential digestion of HBMEC surface N-glycans using specific glycosidases showed that GlcNAc1-4GlcNAc epitopes are sufficient for OmpA interaction with HBMEC. Lack of NG1 and NG2 sites in Ecgp96 inhibits E. coli K1 OmpA induced F-actin polymerization, phosphorylation of protein kinase C-α, and disruption of transendothelial electrical resistance required for efficient invasion of E. coli K1 in HBMEC. Furthermore, the microvessels of cortex and hippocampus of the brain sections of E. coli K1 infected mice showed increased expression of glycosylated Ecgp96. Therefore, the interface of OmpA and GlcNAc1-4GlcNAc epitope interaction would be a target for preventative strategies against E. coli K1 meningitis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Encéfalo/citología , Células Endoteliales/metabolismo , Escherichia coli/metabolismo , Glicoproteínas de Membrana/metabolismo , Polisacáridos/metabolismo , Secuencia de Aminoácidos , Animales , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/química , Encéfalo/metabolismo , Células CHO , Cricetinae , Cricetulus , Células Endoteliales/química , Células Endoteliales/microbiología , Escherichia coli/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Polisacáridos/química
9.
Microbes Infect ; 16(2): 134-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24161960

RESUMEN

Macrophages serve as permissive niches for Escherichia coli (E. coli) K1 to attain high grade bacteremia in the pathogenesis of meningitis in neonates. Although pterin levels are a diagnostic marker for immune activation, the role of macrophages in pterin production and in the establishment of meningitis is unknown. Here, we demonstrate that macrophages infected with E. coli K1 produce both neopterin and biopterin through increased expression of GTP-cyclohydrolase 1 (GCH1). Of note, increased production of biopterin enhances the expression of Fc-gamma receptor I (CD64), which in turn, aided the entry of E. coli K1 in macrophages while increased neopterin suppresses reactive oxygen species (ROS), thereby aiding bacterial survival. Inhibition of GCH1 by 2, 4-Diamino-6-hydroxypyrimidine (DAHP) prevented the E. coli K1 induced expression of CD64 in macrophages in vitro and the development of bacteremia in a newborn mouse model of meningitis. These studies suggest that targeting GCH1 could be therapeutic strategy for preventing neonatal meningitis by E. coli K1.


Asunto(s)
Endocitosis , Escherichia coli/fisiología , GTP Ciclohidrolasa/metabolismo , Interacciones Huésped-Patógeno , Macrófagos/microbiología , Pterinas/metabolismo , Receptores de IgG/metabolismo , Animales , Animales Recién Nacidos , Bacteriemia/microbiología , Bacteriemia/patología , Línea Celular , Femenino , Meningitis Bacterianas/complicaciones , Meningitis Bacterianas/inmunología , Meningitis Bacterianas/microbiología , Ratones , Ratones Endogámicos C57BL
10.
J Infect Dis ; 209(3): 409-19, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24041786

RESUMEN

The increasing incidence of Escherichia coli K1 meningitis due to escalating antibiotic resistance warrants alternate treatment options to prevent this deadly disease. We screened a library of small molecules from the National Institutes of Health clinical collection and identified telmisartan, an angiotensin II receptor type 1 (AT1R) blocker, as a potent inhibitor of E. coli invasion into human brain microvascular endothelial cells (HBMECs). Immunoprecipitation studies revealed that AT1R associates with endothelial cell gp96, the receptor in HBMECs for E. coli outer membrane protein A. HBMECs pretreated with telmisartan or transfected with AT1R small interfering RNA were resistant to E. coli invasion because of downregulation of protein kinase C-α phosphorylation. Administration of a soluble derivative of telmisartan to newborn mice before infection with E. coli prevented the onset of meningitis and suppressed neutrophil infiltration and glial cell migration in the brain. Therefore, telmisartan has potential as an alternate treatment option for preventing E. coli meningitis.


Asunto(s)
Bencimidazoles/uso terapéutico , Benzoatos/uso terapéutico , Células Endoteliales/microbiología , Escherichia coli/fisiología , Meningitis por Escherichia coli/prevención & control , Receptor de Angiotensina Tipo 1/metabolismo , Animales , Animales Recién Nacidos , Antígenos Bacterianos , Cápsulas Bacterianas , Bencimidazoles/farmacología , Benzoatos/farmacología , Línea Celular , Quimioprevención/métodos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Escherichia coli/química , Escherichia coli/clasificación , Humanos , Ratones , Ratones Endogámicos C57BL , Polisacáridos Bacterianos , Telmisartán
11.
Infect Immun ; 81(4): 1267-76, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23381995

RESUMEN

Candida albicans causes both mucosal and disseminated infections, and its capacity to grow as both yeast and hyphae is a key virulence factor. Hyphal formation is a type of polarized growth, and members of the SR (serine-arginine) family of RNA-binding proteins influence polarized growth of both Saccharomyces cerevisiae and Aspergillus nidulans. Therefore, we investigated whether SR-like proteins affect filamentous growth and virulence of C. albicans. BLAST searches with S. cerevisiae SR-like protein Npl3 (ScNpl3) identified two C. albicans proteins: CaNpl3, an apparent ScNpl3 ortholog, and Slr1, another SR-like RNA-binding protein with no close S. cerevisiae ortholog. Whereas ScNpl3 was critical for growth, deletion of NPL3 in C. albicans resulted in few phenotypic changes. In contrast, the slr1Δ/Δ mutant had a reduced growth rate in vitro, decreased filamentation, and impaired capacity to damage epithelial and endothelial cells in vitro. Mice infected intravenously with the slr1Δ/Δ mutant strain had significantly prolonged survival compared to that of mice infected with the wild-type or slr1Δ/Δ mutant complemented with SLR1 (slr1Δ/Δ+SLR1) strain, without a concomitant decrease in kidney fungal burden. Histopathology, however, revealed differential localization of slr1Δ/Δ hyphal and yeast morphologies within the kidney. Mice infected with slr1Δ/Δ cells also had an increased brain fungal burden, which correlated with increased invasion of brain, but not umbilical vein, endothelial cells in vitro. The enhanced brain endothelial cell invasion was likely due to the increased surface exposure of the Als3 adhesin on slr1Δ/Δ cells. Our results indicate that Slr1 is an SR-like protein that influences C. albicans growth, filamentation, host cell interactions, and virulence.


Asunto(s)
Candida albicans/citología , Candida albicans/patogenicidad , Proteínas de Unión al ARN/metabolismo , Animales , Encéfalo/microbiología , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Candidiasis/microbiología , Candidiasis/patología , Células Cultivadas , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Células Endoteliales/microbiología , Células Epiteliales/microbiología , Humanos , Hifa/citología , Hifa/crecimiento & desarrollo , Hifa/patogenicidad , Riñón/microbiología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos ICR , Análisis de Supervivencia , Virulencia
12.
Cell Microbiol ; 15(1): 63-81, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22963587

RESUMEN

The interaction of outer membrane protein A (OmpA) with its receptor, Ecgp96 (a homologue of Hsp90ß), is critical for the pathogenesis of Escherichia coli K1 meningitis. Since Hsp90 chaperones Toll-like receptors (TLRs), we examined the role of TLRs in E. coli K1 infection. Herein, we show that newborn TLR2(-/-) mice are resistant to E. coli K1 meningitis, while TLR4(-/-) mice succumb to infection sooner. In vitro, OmpA+ E. coli infection selectively upregulates Ecgp96 and TLR2 in human brain microvascular endothelial cells (HBMEC), whereas OmpA- E. coli upregulates TLR4 in these cells. Furthermore, infection with OmpA+ E. coli causes Ecgp96 and TLR2 translocate to the plasma membrane of HBMEC as a complex. Immunoprecipitation studies of the plasma membrane fractions from infected HBMEC reveal that the C termini of Ecgp96 and TLR2 are critical for OmpA+ E. coli invasion. Knockdown of TLR2 using siRNA results in inefficient membrane translocation of Ecgp96 and significantly reduces invasion. In addition, the interaction of Ecgp96 andTLR2 induces a bipartite signal, one from Ecgp96 through PKC-α while the other from TLR2 through MyD88, ERK1/2 and NF-κB. This bipartite signal ultimately culminates in the efficient production of NO, which in turn promotes E. coli K1 invasion of HBMEC.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Endocitosis , Células Endoteliales/microbiología , Escherichia coli/patogenicidad , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Análisis Mutacional de ADN , Interacciones Huésped-Patógeno , Humanos , Ratones , Ratones Noqueados , Mapeo de Interacción de Proteínas , Receptor Toll-Like 2/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
13.
Blood ; 121(6): 996-1007, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23243275

RESUMEN

Despite advances in the therapeutic use of recombinant granulocyte colony-stimulating factor (G-CSF) to promote granulopoiesis of human hematopoietic stem cells (HSCs), neutropenia remains one of the most serious complications of cancer chemotherapy. We discovered that retinoid agonist Am80 (tamibarotene) is more potent than G-CSF in coordinating neutrophil differentiation and immunity development. Am80-induced neutrophils (AINs) either in vitro or in neutropenic mouse model displayed strong bactericidal activities, similar to those of human peripheral blood neutrophils (PBNs) or mouse peripheral blood neutrophils (MPBNs) but markedly greater than did G-CSF­induced neutrophils (GINs). In contrast to GINs but similar to PBNs, the enhanced bacterial killing by AINs accompanied both better granule maturation and greater coexpression of CD66 antigen with the integrin ß2 subunit CD18. Consistently, anti-CD18 antibody neutralized Am80-induced bactericidal activities of AINs. These studies demonstrate that Am80 is more effective than G-CSF in promoting neutrophil differentiation and bactericidal activities, probably through coordinating the functional interaction of CD66 with CD18 to enhance the development of neutrophil immunity during granulopoiesis. Our findings herein suggest a molecular rationale for developing new therapy against neutropenia using Am80 as a cost-effective treatment option.


Asunto(s)
Benzoatos/farmacología , Neutropenia/prevención & control , Neutrófilos/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Tetrahidronaftalenos/farmacología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Bacterias/efectos de los fármacos , Bacterias/inmunología , Benzoatos/inmunología , Benzoatos/metabolismo , Western Blotting , Antígenos CD18/inmunología , Antígenos CD18/metabolismo , Moléculas de Adhesión Celular/inmunología , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/inmunología , Células Cultivadas , Ciclofosfamida , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/inmunología , Gránulos Citoplasmáticos/ultraestructura , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Factor Estimulante de Colonias de Granulocitos/inmunología , Factor Estimulante de Colonias de Granulocitos/farmacología , Granulocitos/efectos de los fármacos , Granulocitos/inmunología , Hematopoyesis/efectos de los fármacos , Hematopoyesis/inmunología , Humanos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Neutropenia/inducido químicamente , Neutropenia/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Fagocitosis/inmunología , Retinoides/metabolismo , Tetrahidronaftalenos/inmunología , Tetrahidronaftalenos/metabolismo
14.
J Infect Dis ; 207(1): 61-71, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23100563

RESUMEN

Elevated levels of pterins and nitric oxide (NO) are observed in patients with septic shock and bacterial meningitis. We demonstrate that Escherichia coli K1 infection of human brain microvascular endothelial cells (HBMECs) induces the expression of guanosine triphosphate cyclohydrolase (GCH1), the rate-limiting enzyme in pterin synthesis, thereby elevating levels of biopterin. DAHP (2,4-diamino hydroxyl pyrimidine), a specific inhibitor of GCH1, prevented biopterin and NO production and invasion of E. coli K1 in HBMECs. GCH1 interaction with Ecgp96, the receptor for outer membrane protein A of E. coli K1, also increases on infection, and suppression of Ecgp96 expression prevents GCH1 activation and biopterin synthesis. Pretreatment of newborn mice with DAHP prevented the production of biopterin and the development of meningitis. These results suggest a novel role for biopterin synthesis in the pathogenesis of E. coli K1 meningitis.


Asunto(s)
Biopterinas/metabolismo , Encéfalo/microbiología , Células Endoteliales/microbiología , Escherichia coli/patogenicidad , Meningitis por Escherichia coli/prevención & control , Animales , Animales Recién Nacidos , Proteínas de la Membrana Bacteriana Externa/metabolismo , Biopterinas/biosíntesis , Encéfalo/citología , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , GTP Ciclohidrolasa/antagonistas & inhibidores , Humanos , Hipoxantinas/farmacología , Hipoxantinas/uso terapéutico , Meningitis por Escherichia coli/metabolismo , Meningitis por Escherichia coli/microbiología , Ratones , Ratones Endogámicos C57BL , Microvasos/citología , Microvasos/metabolismo , Microvasos/microbiología , Óxido Nítrico/análisis , Óxido Nítrico/metabolismo , Unión Proteica , Receptores de Superficie Celular/metabolismo , Virulencia
15.
Cell Microbiol ; 14(9): 1415-33, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22519731

RESUMEN

The transcellular entry of Escherichia coli K1 through human brain microvascular endothelial cells (HBMEC) is responsible for tight junction disruption, leading to brain oedema in neonatal meningitis. Previous studies demonstrated that outer membrane protein A (OmpA) of E. coli K1 interacts with its receptor, Ecgp96, to induce PKC-α phosphorylation, adherens junction (AJ) disassembly (by dislodging ß-catenin from VE-cadherin), and remodelling of actin in HBMEC. We report here that IQGAP1 mediates ß-catenin dissociation from AJs to promote actin polymerization required for E. coli K1 invasion of HBMEC. Overexpression of C-terminal truncated IQGAP1 (IQΔC) that cannot bind ß-catenin prevents both AJ disruption and E. coli K1 entry. Of note, phospho-PKC-α interacts with the C-terminal portion of Ecgp96 as well as with VE-cadherin after IQGAP1-mediated AJ disassembly. HBMEC overexpressing either C-terminal truncated Ecgp96 (Ecgp96Δ200) or IQΔC upon infection with E. coli showed no interaction of phospho-PKC-α with Ecgp96. These data indicate that the binding of OmpA to Ecgp96 induces PKC-α phosphorylation and association of phospho-PKC-α with Ecgp96, and then signals IQGAP1 to detach ß-catenin from AJs. Subsequently, IQGAP1/ß-catenin bound actin translocates to the site of E. coli K1 attachment to promote invasion.


Asunto(s)
Uniones Adherentes/metabolismo , Células Endoteliales/microbiología , Escherichia coli/patogenicidad , Proteínas Activadoras de ras GTPasa/metabolismo , Actinas/metabolismo , Células Cultivadas , Humanos , Multimerización de Proteína , beta Catenina/metabolismo
16.
J Surg Res ; 176(2): 437-47, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22221600

RESUMEN

BACKGROUND: Cronobacter sakazakii (CS) is an emerging opportunistic pathogen that causes life-threatening infections in infants. This pathogen has been implicated in the outbreaks of necrotizing enterocolitis (NEC) with associated rates of high mortality and morbidity. In this study, we compared the abilities of CS strains isolated from human and environmental sources to bind to intestinal epithelial cells and trigger apoptosis. MATERIALS AND METHODS: CS strains were isolated from human and environmental sources and their abilities to bind to intestinal epithelial cells were determined. Monolayer permeability was determined by transepithelial electrical resistance (TEER) and horseradish peroxidase (HRP) leakage. Apoptosis was examined by ApoTag and AnnexinV-7AAD staining. PKC activation was evaluated by non-radioactive PepTag assay. RESULTS: Human isolates of CS bind to rat and human enterocytes more efficiently than environmental strains. Additionally, these strains induced increased enterocyte monolayer permeability as indicated by a decrease in TEER and an increase in transcellular leakage of exogenously added HRP. Human isolates also caused tight junction disruption and significant apoptosis of enterocytes compared with environmental strains due to increased production of inducible nitric oxide. We also observed that human CS isolates caused 2-fold increase in the activation of phosphokinase C (PKC) than environmental strains. Blocking the PKC activity in enterocytes by an inhibitor, Gö 6983, suppressed CS-mediated tight junction disruption, monolayer permeability, and apoptosis of the cells. CONCLUSION: These results suggest that human isolates of CS more efficiently bind to and cause damage to intestinal epithelial cells compared with environmental strains.


Asunto(s)
Apoptosis/fisiología , Adhesión Bacteriana/fisiología , Cronobacter sakazakii/metabolismo , Infecciones por Enterobacteriaceae/microbiología , Enterocolitis Necrotizante/microbiología , Enterocitos/microbiología , Animales , Células CACO-2 , Permeabilidad de la Membrana Celular/fisiología , Cronobacter sakazakii/crecimiento & desarrollo , Cronobacter sakazakii/patogenicidad , Infecciones por Enterobacteriaceae/metabolismo , Infecciones por Enterobacteriaceae/patología , Enterocolitis Necrotizante/metabolismo , Enterocolitis Necrotizante/patología , Enterocitos/citología , Enterocitos/metabolismo , Exposición a Riesgos Ambientales , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Humanos , Técnicas In Vitro , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Proteínas de la Membrana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Virulencia , Proteína de la Zonula Occludens-1
17.
FEBS J ; 279(6): 919-31, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22240162

RESUMEN

Outer membrane protein A (OmpA) is an abundant protein of Escherichia coli and other enterobacteria and has a multitude of functions. Although the structural features and porin function of OmpA have been well studied, its role in the pathogenesis of various bacterial infections has emerged only during the last decade. The four extracellular loops of OmpA interact with a variety of host tissues for adhesion to and invasion of the cell and for evasion of host-defense mechanisms when inside the cell. This review describes how various regions present in the extracellular loops of OmpA contribute to the pathogenesis of neonatal meningitis induced by E. coli K1 and to many other functions. In addition, the function of OmpA-like proteins, such as OprF of Pseudomonas aeruginosa, is discussed.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Bacterias Gramnegativas/metabolismo , Secuencia de Aminoácidos , Células Endoteliales/metabolismo , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia
18.
J Surg Res ; 172(1): 18-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21601887

RESUMEN

BACKGROUND: Cronobacter sakazakii (CS) is a highly virulent gram-negative opportunistic pathogen that has been implicated in clinical outbreaks of necrotizing enterocolitis (NEC). The role of mucosal immune cells in CS infection is not well understood. In this study, we sought to elucidate the role of neutrophils (polymorphonuclear leukocytes; PMNs) and macrophages in the pathogenesis of NEC induced by CS using a novel newborn mouse model. MATERIALS AND METHODS: PMNs and macrophages were depleted in newborn mice using Gr-1 antibody and carrageenan, respectively, and then infected with 10(3) CFU of CS. The development of NEC in these mice was assessed by a pathologist based on the morphologic changes in the intestine. Cytokine production was determined in the serum and intestinal homogenates of infected mice by enzyme-linked immunosorbent assay (ELISA). Inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production was determined by flow cytometry and Greiss method, respectively. RESULTS: Depletion of PMNs and macrophages in newborn mice led to increased recruitment of dendritic cells (DCs) in the intestine compared with wild-type mice upon infection with CS. PMN- and macrophage-depleted mice showed increased bacterial load, production of pro-inflammatory cytokines, iNOS expression, and NO production in the intestines in comparison to wild-type mice fed with CS. In addition, depletion of PMNs and macrophages prior to infection in mice resulted in severe inflammation, villus destruction, and enhanced enterocyte apoptosis in the intestines compared with CS-infected wild-type mice. CONCLUSIONS: Our data suggest that depletion of PMNs and macrophages from the lamina propria (LP) exacerbates experimental NEC, indicating that both of these immunocytes play an important role in the clearance of CS during the initial stages of infection. The increased mucosal cytokine response and NO production in the absence of these immunocytes may be responsible for the observed increase in mucosal injury. Understanding how CS manipulates these cells, employing novel mouse model of NEC reported in this study, will provide significant insights for the development of novel therapeutic and preventive strategies to combat NEC.


Asunto(s)
Cronobacter sakazakii/aislamiento & purificación , Infecciones por Enterobacteriaceae/complicaciones , Enterocolitis Necrotizante/microbiología , Macrófagos/fisiología , Neutrófilos/fisiología , Animales , Animales Recién Nacidos , Apoptosis/fisiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Infecciones por Enterobacteriaceae/patología , Infecciones por Enterobacteriaceae/fisiopatología , Enterocolitis Necrotizante/patología , Enterocolitis Necrotizante/fisiopatología , Inmunidad Innata/fisiología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Membrana Mucosa/fisiopatología , Neutrófilos/patología , Óxido Nítrico Sintasa de Tipo II/metabolismo
19.
Nat Commun ; 2: 552, 2011 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-22109526

RESUMEN

Despite the fundamental function of neutrophils (polymorphonuclear leukocytes (PMNs)) in innate immunity, their role in Escherichia coli K1 (EC-K1) -induced meningitis is unexplored. Here we show that PMN-depleted mice are resistant to EC-K1 (RS218) meningitis. EC-K1 survives and multiplies in PMNs for which outer membrane protein A (OmpA) expression is essential. EC-K1 infection of PMNs increases the cell surface expression of gp96, which acts as a receptor for bacterial entry. Suppression of gp96 expression in newborn mice prevents the onset of EC-K1 meningitis. Infection of PMNs with EC-K1 suppresses oxidative burst by downregulating rac1, rac2 and gp91(phox) transcription both in vitro and in vivo. The interaction of loop 2 of OmpA with gp96 is essential for EC-K1-mediated inhibition of oxidative burst. These results reveal that EC-K1 exploits surface-expressed gp96 in PMNs to prevent oxidative burst for the onset of neonatal meningitis.


Asunto(s)
Escherichia coli/inmunología , Escherichia coli/patogenicidad , Glicoproteínas de Membrana/metabolismo , Meningitis Bacterianas/inmunología , Meningitis Bacterianas/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiología , Animales , Animales Recién Nacidos , Células Cultivadas , Escherichia coli/metabolismo , Femenino , Citometría de Flujo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Meningitis Bacterianas/genética , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
20.
PLoS Pathog ; 7(10): e1002305, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21998592

RESUMEN

During hematogenously disseminated disease, Candida albicans infects most organs, including the brain. We discovered that a C. albicans vps51Δ/Δ mutant had significantly increased tropism for the brain in the mouse model of disseminated disease. To investigate the mechanisms of this enhanced trafficking to the brain, we studied the interactions of wild-type C. albicans and the vps51Δ/Δ mutant with brain microvascular endothelial cells in vitro. These studies revealed that C. albicans invasion of brain endothelial cells is mediated by the fungal invasins, Als3 and Ssa1. Als3 binds to the gp96 heat shock protein, which is expressed on the surface of brain endothelial cells, but not human umbilical vein endothelial cells, whereas Ssa1 binds to a brain endothelial cell receptor other than gp96. The vps51Δ/Δ mutant has increased surface expression of Als3, which is a major cause of the increased capacity of this mutant to both invade brain endothelial cells in vitro and traffic to the brain in mice. Therefore, during disseminated disease, C. albicans traffics to and infects the brain by binding to gp96, a unique receptor that is expressed specifically on the surface of brain endothelial cells.


Asunto(s)
Encéfalo/citología , Encéfalo/microbiología , Candida albicans/metabolismo , Candida albicans/patogenicidad , Proteínas Fúngicas/metabolismo , Animales , Proteínas Portadoras , Proteínas Fúngicas/genética , Células Endoteliales de la Vena Umbilical Humana/microbiología , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Endogámicos BALB C , Plásmidos , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA