Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
NPJ Vaccines ; 9(1): 126, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997302

RESUMEN

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to prime and elicit antibody responses against the conserved fusion peptide (FP). GC responses and antibody specificities were tracked longitudinally using lymph node fine-needle aspirates and electron microscopy polyclonal epitope mapping (EMPEM), respectively, to show antibody responses to the FP/N611 glycan hole region were primed, although exhibited limited neutralization breadth. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

2.
bioRxiv ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425865

RESUMEN

Immunodominance of antibodies targeting non-neutralizing epitopes and the high level of somatic hypermutation within germinal centers (GCs) required for most HIV broadly neutralizing antibodies (bnAbs) are major impediments to the development of an effective HIV vaccine. Rational protein vaccine design and non-conventional immunization strategies are potential avenues to overcome these hurdles. Here, we report using implantable osmotic pumps to continuously deliver a series of epitope-targeted immunogens to rhesus macaques over the course of six months to elicit immune responses against the conserved fusion peptide. Antibody specificities and GC responses were tracked longitudinally using electron microscopy polyclonal epitope mapping (EMPEM) and lymph node fine-needle aspirates, respectively. Application of cryoEMPEM delineated key residues for on-target and off-target responses that can drive the next round of structure-based vaccine design.

3.
Cell Rep Methods ; 3(6): 100509, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37426749

RESUMEN

Understanding antibody-antigen interactions in a polyclonal immune response in humans and animal models is critical for rational vaccine design. Current approaches typically characterize antibodies that are functionally relevant or highly abundant. Here, we use photo-cross-linking and single-particle electron microscopy to increase antibody detection and unveil epitopes of low-affinity and low-abundance antibodies, leading to a broader structural characterization of polyclonal immune responses. We employed this approach across three different viral glycoproteins and showed increased sensitivity of detection relative to currently used methods. Results were most noticeable in early and late time points of a polyclonal immune response. Additionally, the use of photo-cross-linking revealed intermediate antibody binding states and demonstrated a distinctive way to study antibody binding mechanisms. This technique can be used to structurally characterize the landscape of a polyclonal immune response of patients in vaccination or post-infection studies at early time points, allowing for rapid iterative design of vaccine immunogens.


Asunto(s)
Anticuerpos Neutralizantes , Vacunas , Animales , Humanos , Epítopos/química , Vacunación
4.
MAbs ; 11(4): 639-652, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30698484

RESUMEN

T-cell-recruiting bispecific antibodies (T-BsAbs) have shown potent tumor killing activity in humans, but cytokine release-related toxicities have affected their clinical utility. The use of novel anti-CD3 binding domains with more favorable properties could aid in the creation of T-BsAbs with improved therapeutic windows. Using a sequence-based discovery platform, we identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. Our lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.


Asunto(s)
Anticuerpos Biespecíficos/metabolismo , Anticuerpos Monoclonales/metabolismo , Complejo CD3/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Animales Endogámicos , Antígenos de Neoplasias/inmunología , Citocinas/metabolismo , Citotoxicidad Inmunológica , Femenino , Humanos , Células Jurkat , Activación de Linfocitos , Ratones , Neoplasias/inmunología , Ratas , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Immunol ; 9: 889, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29740455

RESUMEN

We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Descubrimiento de Drogas/métodos , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Genes de las Cadenas Ligeras de las Inmunoglobulinas/genética , Cadenas kappa de Inmunoglobulina/inmunología , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/uso terapéutico , Antígenos/administración & dosificación , Antígenos/inmunología , Linfocitos B/inmunología , Centro Germinal/citología , Centro Germinal/inmunología , Secuenciación de Nucleótidos de Alto Rendimiento , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Cadenas kappa de Inmunoglobulina/genética , Modelos Animales , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
6.
Front Immunol ; 9: 3037, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30666250

RESUMEN

Heavy chain-only antibodies (HCAbs) do not associate with light chains and their VH regions are functional as single domains, forming the smallest active antibody fragment. These VH regions are ideal building blocks for a variety of antibody-based biologics because they tolerate fusion to other molecules and may also be attached in series to construct multispecific antibodies without the need for protein engineering to ensure proper heavy and light chain pairing. Production of human HCAbs has been impeded by the fact that natural human VH regions require light chain association and display poor biophysical characteristics when expressed in the absence of light chains. Here, we present an innovative platform for the rapid development of diverse sets of human HCAbs that have been selected in vivo. Our unique approach combines antibody repertoire analysis with immunization of transgenic rats, called UniRats, that produce chimeric HCAbs with fully human VH domains in response to an antigen challenge. UniRats express HCAbs from large transgenic loci representing the entire productive human heavy chain V(D)J repertoire, mount robust immune responses to a wide array of antigens, exhibit diverse V gene usage and generate large panels of stable, high affinity, antigen-specific molecules.


Asunto(s)
Anticuerpos/química , Anticuerpos/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas Pesadas de Inmunoglobulina/inmunología , Ingeniería de Proteínas/métodos , Animales , Afinidad de Anticuerpos , Antígenos/inmunología , Linfocitos B/inmunología , Células CHO , Cricetulus , Cristalografía , Citometría de Flujo , Sitios Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunización , Cadenas Ligeras de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/inmunología , Estructura Secundaria de Proteína , Ratas , Ratas Transgénicas , Anticuerpos de Dominio Único/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA