Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Neurosci ; 44(6)2024 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-38169457

RESUMEN

It is well established that, during neural circuit development, glutamatergic synapses become strengthened via NMDA receptor (NMDAR)-dependent upregulation of AMPA receptor (AMPAR)-mediated currents. In addition, however, it is known that the neuromodulator serotonin is present throughout most regions of the vertebrate brain while synapses are forming and being shaped by activity-dependent processes. This suggests that serotonin may modulate or contribute to these processes. Here, we investigate the role of serotonin in the developing retinotectal projection of the Xenopus tadpole. We altered endogenous serotonin transmission in stage 48/49 (∼10-21 days postfertilization) Xenopus tadpoles and then carried out a set of whole-cell electrophysiological recordings from tectal neurons to assess retinotectal synaptic transmission. Because tadpole sex is indeterminate at these early stages of development, experimental groups were composed of randomly chosen tadpoles. We found that pharmacologically enhancing and reducing serotonin transmission for 24 h up- and downregulates, respectively, AMPAR-mediated currents at individual retinotectal synapses. Inhibiting 5-HT2 receptors also significantly weakened AMPAR-mediated currents and abolished the synapse strengthening effect seen with enhanced serotonin transmission, indicating a 5-HT2 receptor-dependent effect. We also determine that the serotonin-dependent upregulation of synaptic AMPAR currents was mediated via an NMDAR-independent, PI3K-dependent mechanism. Altogether, these findings indicate that serotonin regulates AMPAR currents at developing synapses independent of NMDA transmission, which may explain its role as an enabler of activity-dependent plasticity.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Serotonina , Sinapsis/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico
2.
STAR Protoc ; 4(3): 102422, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37440413

RESUMEN

Xenopus tadpoles display innate visually guided behaviors which are thought to promote survival by guiding them toward sources of food and away from predators. Experimentally, studying these behaviors can provide insight into the formation and function of the neural circuits which underlie them. Here, we present a protocol for measuring visual preferences of freely swimming tadpoles. We describe steps to create the visual stimuli, carry out the experiments, and analyze the resulting data. For complete details on the use and execution of this protocol, please refer to Hunt et al.1 and Bruno et al.2.


Asunto(s)
Conducta Animal , Natación , Animales , Xenopus laevis , Larva
3.
iScience ; 25(11): 105375, 2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36345330

RESUMEN

Innate visually guided behaviors are thought to promote survival by guiding organisms to sources of food and safety and away from harm without requiring learning. Historically, innate behaviors have been considered hard-wired and invariable, but emerging evidence shows that many innate behaviors are flexible and complex due to modulation. Here, we investigate the modulation of the innate preference for light displayed by the Xenopus laevis tadpole, an exceptionally invasive and well-studied organism that is known to display several different innate visually guided behaviors. We found that tadpoles display a circadian-regulated oscillation in their preference for light over dark which can be altered by experimentally increasing or decreasing levels of serotonin transmission. We also found that endogenous levels of serotonin transmission during the day maintain a consistently moderate preference for light. Theoretically, a moderate preference for light, as opposed to a strong preference, optimizes survival by rendering tadpoles' behavior less predictable.

4.
Cold Spring Harb Protoc ; 2021(11)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33536288

RESUMEN

The Xenopus tadpole retinotectal projection is the main component of the amphibian visual system. It comprises the retinal ganglion cells (RGCs) in the eye, which project an axon to synapse onto tectal neurons in the optic tectum. There are many attributes of this relatively simple projection that render it uniquely well-suited for studying the functional development of neural circuits. One major experimental advantage of this circuit is that it can be genetically or pharmacologically altered and then assessed at high resolution via whole-cell electrophysiological recordings using an ex vivo isolated brain preparation. This protocol provides instructions for performing such electrophysiological investigations using the ex-vivo-isolated brain preparation. It allows one to measure many different aspects of synaptic transmission between the RGC axons and individual postsynaptic tectal neurons, including AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to NMDA (N-methyl-d-aspartate) ratios, strength of individual RGC axons, paired pulse facilitation, and strength of individual synapses.


Asunto(s)
Colículos Superiores , Sinapsis , Animales , Axones/fisiología , Larva , Retina , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología , Xenopus laevis
5.
Dev Neurobiol ; 78(12): 1171-1190, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30246932

RESUMEN

As the catalytic component of γ-secretase, presenilin (PS) has long been studied in the context of Alzheimer's disease through cleaving the amyloid precursor protein. PS/γ-secretase, however, also cleaves a multitude of single-pass transmembrane proteins that are important during development, including Notch, the netrin receptor DCC, cadherins, drebrin-A, and the EphB2 receptor. Because transgenic PS-KO mice do not survive to birth, studies of this molecule during later embryonic or early postnatal stages of development have been carried out using cell cultures or conditional knock-out mice, respectively. As a result, the function of PS in synapse formation had not been well-addressed. Here, we study the role of PS in the developing Xenopus tadpole retinotectal circuit, an in-vivo model that allows for protein expression to be manipulated specifically during the peak of synapse formation between retinal ganglion cells and tectal neurons. We found that inhibiting PS in the postsynaptic tectal neurons impaired tadpole visual avoidance behavior. Whole cell recordings indicated weaker retinotectal synaptic transmission which was characterized by significant reductions in both NMDA receptor (NMDAR)- and AMPA receptor (AMPAR)-mediated currents. We also found that expression of the C-tail fragment of the EphB2 receptor, which is normally cleaved by PS/γ-secretase and which has been shown to upregulate NMDARs at the synapse, rescued the reduced NMDAR-mediated responses. Our data determine that normal PS function is important for proper formation and strengthening of retinotectal synapses through cleaving the EphB2 receptor.


Asunto(s)
Conducta Animal/fisiología , Fenómenos Electrofisiológicos/fisiología , Presenilinas/metabolismo , Receptor EphB2/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología , Percepción Visual/fisiología , Animales , Larva , Colículos Superiores/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Xenopus
6.
J Vis Exp ; (133)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29608176

RESUMEN

The Xenopus tadpole retinotectal circuit, comprised of the retinal ganglion cells (RGCs) in the eye which form synapses directly onto neurons in the optic tectum, is a popular model to study how neural circuits self-assemble. The ability to carry out whole cell patch clamp recordings from tectal neurons and to record RGC-evoked responses, either in vivo or using a whole brain preparation, has generated a large body of high-resolution data about the mechanisms underlying normal, and abnormal, circuit formation and function. Here we describe how to perform the in vivo preparation, the original whole brain preparation, and a more recently developed horizontal brain slice preparation for obtaining whole cell patch clamp recordings from tectal neurons. Each preparation has unique experimental advantages. The in vivo preparation enables the recording of the direct response of tectal neurons to visual stimuli projected onto the eye. The whole brain preparation allows for the RGC axons to be activated in a highly controlled manner, and the horizontal brain slice preparation allows recording from across all layers of the tectum.


Asunto(s)
Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Xenopus laevis/fisiología , Animales , Larva , Colículos Superiores/citología , Colículos Superiores/fisiología
7.
Front Neural Circuits ; 10: 79, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27818623

RESUMEN

Neural circuit development is an activity-dependent process. This activity can be spontaneous, such as the retinal waves that course across the mammalian embryonic retina, or it can be sensory-driven, such as the activation of retinal ganglion cells (RGCs) by visual stimuli. Whichever the source, neural activity provides essential instruction to the developing circuit. Indeed, experimentally altering activity has been shown to impact circuit development and function in many different ways and in many different model systems. In this review, we contemplate the idea that retinal waves in amniotes, the animals that develop either in ovo or utero (namely reptiles, birds and mammals) could be an evolutionary adaptation to life on land, and that the anamniotes, animals whose development is entirely external (namely the aquatic amphibians and fish), do not display retinal waves, most likely because they simply don't need them. We then review what is known about the function of both retinal waves and visual stimuli on their respective downstream targets, and predict that the experience-dependent development of the tadpole visual system is a blueprint of what will be found in future studies of the effects of spontaneous retinal waves on instructing development of retinorecipient targets such as the superior colliculus (SC) and the lateral geniculate nucleus.


Asunto(s)
Evolución Biológica , Plasticidad Neuronal/fisiología , Retina/fisiología , Vías Visuales/fisiología , Animales
8.
Elife ; 52016 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-27879199

RESUMEN

In the vertebrate CNS, afferent sensory inputs are targeted to specific depths or layers of their target neuropil. This patterning exists ab initio, from the very beginning, and therefore has been considered an activity-independent process. However, here we report that, during circuit development, the subcellular segregation of the visual and mechanosensory inputs to specific regions of tectal neuron dendrites in the tadpole optic tectum requires NMDA receptor activity. Blocking NMDARs during the formation of these sensory circuits, or removing the visual set of inputs, leads to less defined segregation, and suggests a correlation-based mechanism in which correlated inputs wire to common regions of dendrites. This can account for how two sets of inputs form synapses onto different regions of the same dendrite. Blocking NMDA receptors during later stages of circuit development did not disrupt segregation, indicating a critical period for activity-dependent shaping of patterns of innervation.


Asunto(s)
Potenciales Evocados Somatosensoriales/fisiología , Larva/metabolismo , Neurogénesis/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Colículos Superiores/metabolismo , Xenopus laevis/metabolismo , Animales , Dendritas/efectos de los fármacos , Dendritas/metabolismo , Dendritas/ultraestructura , Maleato de Dizocilpina/farmacología , Potenciales Evocados Somatosensoriales/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Expresión Génica , Larva/citología , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Neurópilo/citología , Neurópilo/efectos de los fármacos , Neurópilo/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Colículos Superiores/citología , Colículos Superiores/efectos de los fármacos , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Potenciales Sinápticos/efectos de los fármacos , Potenciales Sinápticos/fisiología , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo
9.
Curr Opin Neurobiol ; 41: 17-23, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27475307

RESUMEN

The retinotectal circuit is the major component of the amphibian visual system. It is comprised of the retinal ganglion cells (RGCs) in the eye, which project their axons to the optic tectum and form synapses onto postsynaptic tectal neurons. The retinotectal circuit is relatively simple, and develops quickly: Xenopus tadpoles begin displaying retinotectal-dependent visual avoidance behaviors by approximately 7-8 days post-fertilization, early larval stage. In this review we first provide a summary of the dynamic development of the retinotectal circuit, including the microcircuitry formed by local tectal-tectal connections within the tectum. Second, we discuss the basic visual avoidance behavior generated specifically by this circuit, and how this behavior is being used as an assay to test visual system function.


Asunto(s)
Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Xenopus/fisiología , Animales , Larva , Vías Visuales/fisiología
10.
Neural Dev ; 11(1): 14, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27503008

RESUMEN

BACKGROUND: Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. METHODS: We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. RESULTS: We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. CONCLUSIONS: Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.


Asunto(s)
Conducta Animal , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/fisiología , Síndrome del Cromosoma X Frágil/fisiopatología , Inhibición Neural , Neuronas/fisiología , Colículos Superiores/fisiología , Animales , Reacción de Fuga/fisiología , Potenciales Postsinápticos Excitadores , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Técnicas de Silenciamiento del Gen , Potenciales de la Membrana , Neuronas/metabolismo , Convulsiones/genética , Colículos Superiores/metabolismo , Natación/fisiología , Xenopus laevis
11.
J Neurophysiol ; 115(3): 1477-86, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26763780

RESUMEN

In many regions of the vertebrate brain, microcircuits generate local recurrent activity that aids in the processing and encoding of incoming afferent inputs. Local recurrent activity can amplify, filter, and temporally and spatially parse out incoming input. Determining how these microcircuits function is of great interest because it provides glimpses into fundamental processes underlying brain computation. Within the Xenopus tadpole optic tectum, deep layer neurons display robust recurrent activity. Although the development and plasticity of this local recurrent activity has been well described, the underlying microcircuitry is not well understood. Here, using a whole brain preparation that allows for whole cell recording from neurons of the superficial tectal layers, we identified a physiologically distinct population of excitatory neurons that are gap junctionally coupled and through this coupling gate local recurrent network activity. Our findings provide a novel role for neuronal coupling among excitatory interneurons in the temporal processing of visual stimuli.


Asunto(s)
Uniones Comunicantes/fisiología , Neuronas Aferentes/fisiología , Colículos Superiores/fisiología , Animales , Potenciales Postsinápticos Excitadores , Interneuronas/fisiología , Colículos Superiores/citología , Colículos Superiores/crecimiento & desarrollo , Percepción Visual , Xenopus
12.
Curr Biol ; 26(2): R64-R66, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26811889

RESUMEN

A recent study demonstrates how acute neural circuit manipulations can lead to overestimations of circuit function, while chronic manipulations can reveal compensatory modes of plasticity that restore behavior.


Asunto(s)
Artefactos , Vías Nerviosas/fisiología , Optogenética , Animales , Femenino , Masculino
13.
J Neurophysiol ; 113(1): 400-7, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25343786

RESUMEN

The Xenopus tadpole optic tectum is a multisensory processing center that receives direct visual input as well as nonvisual mechanosensory input. The tectal neurons that comprise the optic tectum are organized into layers. These neurons project their dendrites laterally into the neuropil where visual inputs target the distal region of the dendrite and nonvisual inputs target the proximal region of the same dendrite. The Xenopus tadpole tectum is a popular model to study the development of sensory circuits. However, whole cell patch-clamp electrophysiological studies of the tadpole tectum (using the whole brain or in vivo preparations) have focused solely on the deep-layer tectal neurons because only neurons of the deep layer are visible and accessible for whole cell electrophysiological recordings. As a result, whereas the development and plasticity of these deep-layer neurons has been well-studied, essentially nothing has been reported about the electrophysiology of neurons residing beyond this layer. Hence, there exists a large gap in our understanding about the functional development of the amphibian tectum as a whole. To remedy this, we developed a novel isolated brain preparation that allows visualizing and recording from all layers of the tectum. We refer to this preparation as the "horizontal brain slice preparation." Here, we describe the preparation method and illustrate how it can be used to characterize the electrophysiology of neurons across all of the layers of the tectum as well as the spatial pattern of synaptic input from the different sensory modalities.


Asunto(s)
Electrofisiología/métodos , Neuronas/fisiología , Colículos Superiores/fisiología , Técnicas de Cultivo de Tejidos , Xenopus laevis/fisiología , Animales , Estimulación Eléctrica , Larva , Microelectrodos , Neuronas/citología , Técnicas de Placa-Clamp/métodos , Colículos Superiores/anatomía & histología , Colículos Superiores/crecimiento & desarrollo , Xenopus laevis/anatomía & histología , Xenopus laevis/crecimiento & desarrollo
14.
J Neurophysiol ; 112(7): 1644-55, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24990560

RESUMEN

Across the rostrocaudal (RC) axis of the Xenopus tadpole optic tectum exists a developmental gradient. This gradient has served as a useful model to study many aspects of synapse and dendrite maturation. To compliment these studies, we characterized how the intrinsic excitability, the ease in which a neuron can fire action potentials, might also be changing across the same axis. Whole-cell recordings from tectal neurons at different points along the RC axis revealed a graded increase in intrinsic excitability: compared with neurons at the caudal end of the tectum, neurons at the rostral end fired more action potentials in response to current injection and expressed greater peak Na⁺ and K⁺ currents, the major intrinsic currents in these neurons that underlie the action potential. We also observed, along the same axis and in the same direction, a previously described increase in the amount of synaptic drive received by individual neurons (Wu GY, Malinow R, Cline HT. Science 274: 972-976, 1996). Thus as synaptic activity ramps up across the RC axis, so does intrinsic excitability. The reduction of overall circuit activity induced a compensatory scaling up of peak Na⁺ and K⁺ currents only in the caudal portion of the tectum, suggesting a region-specific, compensatory form of plasticity.


Asunto(s)
Potenciales de Acción , Potenciales Postsinápticos Excitadores , Neuronas/fisiología , Colículos Superiores/crecimiento & desarrollo , Animales , Canales de Potasio con Entrada de Voltaje/fisiología , Canales de Sodio Activados por Voltaje/fisiología , Xenopus
15.
Dis Model Mech ; 6(5): 1057-65, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23929939

RESUMEN

The Xenopus tadpole model offers many advantages for studying the molecular, cellular and network mechanisms underlying neurodevelopmental disorders. Essentially every stage of normal neural circuit development, from axon outgrowth and guidance to activity-dependent homeostasis and refinement, has been studied in the frog tadpole, making it an ideal model to determine what happens when any of these stages are compromised. Recently, the tadpole model has been used to explore the mechanisms of epilepsy and autism, and there is mounting evidence to suggest that diseases of the nervous system involve deficits in the most fundamental aspects of nervous system function and development. In this Review, we provide an update on how tadpole models are being used to study three distinct types of neurodevelopmental disorders: diseases caused by exposure to environmental toxicants, epilepsy and seizure disorders, and autism.


Asunto(s)
Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/terapia , Modelos Animales de Enfermedad , Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/patología , Xenopus/crecimiento & desarrollo , Animales , Contaminantes Ambientales/toxicidad , Humanos , Larva , Sistema Nervioso/efectos de los fármacos
16.
Nat Neurosci ; 14(9): 1112-4, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841774

RESUMEN

Neurons adapt to long-lasting changes in network activity, both in vivo and in vitro, by adjusting their synaptic strengths to stabilize firing rates. We found that homeostatic scaling of excitatory synapses was impaired in hippocampal neurons derived from mice lacking presenilin 1 (Psen1(-/-) mice) or expressing a familial Alzheimer's disease-linked Psen1 mutation (Psen1(M146V)). These findings suggest that deficits in synaptic homeostasis may contribute to brain dysfunction in Alzheimer's disease.


Asunto(s)
Homeostasis/fisiología , Neuronas/fisiología , Proteína Oncogénica v-akt/metabolismo , Presenilina-1/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Biofisica , Estimulación Eléctrica , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Homeostasis/efectos de los fármacos , Homeostasis/genética , Metionina/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Mutación/genética , Proteína Oncogénica v-akt/genética , Técnicas de Placa-Clamp/métodos , Presenilina-1/deficiencia , Transducción de Señal/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sinapsis/genética , Tetrodotoxina/farmacología , Transfección , Valina/genética
17.
J Neurosci ; 31(3): 899-906, 2011 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-21248114

RESUMEN

With a multitude of substrates, γ-secretase is poised to control neuronal function through a variety of signaling pathways. Presenilin 1 (PS1) is an integral component of γ-secretase and is also a protein closely linked to the etiology of Alzheimer's disease (AD). To better understand the roles of γ-secretase and PS1 in normal and pathological synaptic transmission, we examined evoked and spontaneous neurotransmitter release in cultured hippocampal neurons derived from PS1 knock-out (KO) mice. We found no changes in the size of evoked synaptic currents, short-term plasticity, or apparent calcium dependence of evoked release. The rate of spontaneous release from PS1 KO neurons was, however, approximately double that observed in wild-type (WT) neurons. This increase in spontaneous neurotransmission depended on calcium influx but did not require activation of voltage-gated calcium channels or presynaptic NMDA receptors or release of calcium from internal stores. The rate of spontaneous release from PS1 KO neurons was significantly reduced by lentivirus-mediated expression of WT PS1 or familial AD-linked M146V PS1, but not the D257A PS1 mutant that does not support γ-secretase activity. Treatment of WT neuronal cultures with γ-secretase inhibitor mimicked the loss of PS1, leading to a selective increase in spontaneous release without any change in the size of evoked synaptic currents. Together, these results identify a novel role for γ-secretase in the control of spontaneous neurotransmission through modulation of low-level tonic calcium influx into presynaptic axon terminals.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Western Blotting , Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Células Cultivadas , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/citología , Ratones , Ratones Noqueados , Neuronas/citología , Técnicas de Placa-Clamp , Presenilina-1/genética , Receptores de N-Metil-D-Aspartato/metabolismo
18.
J Neurophysiol ; 102(1): 399-412, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19386750

RESUMEN

Mesencephalic trigeminal (M-V) neurons are primary somatosensory neurons with somata located within the CNS, instead of in peripheral sensory ganglia. In amphibians, these unipolar cells are found within the optic tectum and have a single axon that runs along the mandibular branch of the trigeminal nerve. The axon has collaterals in the brain stem and is believed to make synaptic contact with neurons in the trigeminal motor nucleus, forming part of a sensorimotor loop. The number of M-V neurons is known to increase until metamorphosis and then decrease, suggesting that at least some M-V neurons may play a transient role during tadpole development. It is not known whether their location in the optic tectum allows them to process both visual and somatosensory information. Here we compare the anatomical and electrophysiological properties of M-V neurons in the Xenopus tadpole to principal tectal neurons. We find that, unlike principal tectal cells, M-V neurons can sustain repetitive spiking when depolarized and express a significant H-type current. M-V neurons could also be driven synaptically by visual input both in vitro and in vivo, but visual responses were smaller and longer-lasting than those seen in principal tectal neurons. We also found that the axon of M-V neurons appears to directly innervate a tentacle found in the corner of the mouth of premetamorphic tadpoles. Electrical stimulation of this transient sensory organ results in antidromic spiking in M-V neurons in the tectum. Thus M-V neurons may play an integrative multisensory role during tadpole development.


Asunto(s)
Potenciales de la Membrana/fisiología , Neuronas/fisiología , Techo del Mesencéfalo/citología , Núcleos del Trigémino/citología , Xenopus/fisiología , Animales , Biofisica , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/fisiología , Larva/citología , Lisina/análogos & derivados , Lisina/metabolismo , Modelos Anatómicos , Vías Nerviosas , Técnicas de Placa-Clamp/métodos , Estimulación Física/métodos , Sinapsis/fisiología , Techo del Mesencéfalo/fisiología , Xenopus/anatomía & histología
19.
J Neurophysiol ; 101(2): 803-15, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19073807

RESUMEN

The optic tectum is central for transforming incoming visual input into orienting behavior. Yet it is not well understood how this behavior is organized early in development and how it relates to the response properties of the developing visual system. We designed a novel behavioral assay to study the development of visually guided behavior in Xenopus laevis tadpoles. We found that, during early development, visual avoidance-an innate, tectally mediated behavior-is tuned to a specific stimulus size and is sensitive to changes in contrast. Using in vivo recordings we found that developmental changes in the spatial tuning of visual avoidance are mirrored by changes in tectal receptive field sharpness and the temporal properties of subthreshold visual responses, whereas contrast sensitivity is affected by the gain of the visual response. We also show that long- and short-term perturbations of visual response properties predictably alter behavioral output. We conclude that our assay for visual avoidance is a useful functional measure of the developmental state of the tectal circuitry. We use this assay to show that the developing visual system is tuned to facilitate behavioral output and that the system can be modulated by neural activity, allowing it to adapt to environmental changes it encounters during development.


Asunto(s)
Reacción de Fuga/fisiología , Instinto , Colículos Superiores/crecimiento & desarrollo , Vías Visuales/crecimiento & desarrollo , Xenopus laevis/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Mapeo Encefálico , Reacción de Fuga/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Estimulación Luminosa , Colículos Superiores/citología , Colículos Superiores/efectos de los fármacos , Visión Ocular/fisiología , Campos Visuales/efectos de los fármacos , Campos Visuales/fisiología , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología
20.
Neuron ; 58(5): 651-3, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18549775

RESUMEN

TNFalpha has been proposed to underlie synaptic scaling, but the mechanism and functional significance of this remain unclear. In this issue of Neuron, Cingolani et al. demonstrate that TNFalpha can mediate scaling through the regulation of beta3 integrins. Kaneko et al. show that TNFalpha-dependent synaptic scaling plays an important role in visual cortical plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Integrina beta3/metabolismo , Factor de Necrosis Tumoral alfa/fisiología , Corteza Visual/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA