Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sports Med ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39352665

RESUMEN

BACKGROUND: The growing interest in how exercise and carbohydrate (CHO) restriction may modify molecular responses that promote endurance adaptations has led to many interesting controversies. OBJECTIVE: We conducted a systematic review and a meta-analysis regarding the effect of low-carbohydrate availability (LOW) pre-, during, or post-exercise, on the mRNA content of commonly measured genes involved in mitochondrial biogenesis (PGC-1α, TFAM mRNA) and metabolism (PDK4, UCP3 and GLUT4 mRNA), and on muscle glycogen levels, compared with a high-CHO (CON) condition. METHODS: MEDLINE, Scopus, and Web of Science databases were searched following the PRISMA 2020 guidelines (with an end date of November 2023). In total, 19 randomized-controlled studies were considered for inclusion. We evaluated the methodological quality of all studies using the Cochrane Risk of Bias tool for randomized clinical studies. A meta-analysis was performed using a random effects model to calculate the standardized mean difference (SMD), estimated by Hedges' g, and 95% confidence intervals (CIs). RESULTS: The LOW condition was associated with an increased mRNA content of several genes during the early recovery period post-exercise, such as PDK4 (SMD 1.61; 95% CI 0.80-2.42), GLUT4 (SMD 1.38; 95% CI 0.46-2.30), and UCP3 (SMD 2.05; 95% CI 0.40-3.69). However, overall, there was no significant effect on the mRNA content of PGC-1α or TFAM. Finally, CHO restriction and exercise significantly reduced muscle glycogen levels (SMD 3.69; 95% CI 2.82-5.09). A meta-analysis of subgroups from studies with a difference in muscle glycogen concentration of > 200 mmol kg dw-1 between the LOW and CON conditions showed an increase in exercise-induced PGC-1α mRNA (SMD 2.08; 95% CI 0.64-3.52; p = 0.005; I2 = 75%) and a greater effect in PDK4 and GLUT4 mRNA. CONCLUSION: The meta-analysis results show that CHO restriction was associated with an increase in the exercise-induced mRNA content of PDK4, UCP3, and GLUT4, but not the exercise-induced mRNA content of PGC-1ɑ and TFAM. However, when there were substantial differences in glycogen depletion between CON and LOW CHO conditions (> 200 mmol kg dw-1), there was a greater effect of CHO restriction on the exercise-induced mRNA content of metabolic genes, and an increase in exercise-induced PGC-1α mRNA.

2.
Nutrients ; 16(2)2024 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-38276556

RESUMEN

There is a growing interest in studies involving carbohydrate (CHO) manipulation and subsequent adaptations to endurance training. This study aimed to analyze whether a periodized carbohydrate feeding strategy based on a daily training session has any advantages compared to a high-carbohydrate diet in well-trained cyclists. Seventeen trained cyclists (VO2peak = 70.8 ± 6.5 mL·kg-1·min-1) were divided into two groups, a periodized (PCHO) group and a high-carbohydrate (HCHO) group. Both groups performed the same training sessions for five weeks. In the PCHO group, 13 training sessions were performed with low carbohydrate availability. In the HCHO group, all sessions were completed following previous carbohydrate intake to ensure high pre-exercise glycogen levels. In both groups, there was an increase in the maximal lactate steady state (MLSS) (PCHO: 244.1 ± 29.9 W to 253.2 ± 28.4 W; p = 0.008; HCHO: 235.8 ± 21.4 W to 246.9 ± 16.7 W; p = 0.012) but not in the time to exhaustion at MLSS intensity. Both groups increased the percentage of muscle mass (PCHO: p = 0.021; HCHO: p = 0.042) and decreased the percent body fat (PCHO: p = 0.021; HCHO: p = 0.012). We found no differences in carbohydrate or lipid oxidation, heart rate, and post-exercise lactate concentration. Periodizing the CHO intake in well-trained cyclists during a 5-week intervention did not elicit superior results to an energy intake-matched high-carbohydrate diet in any of the measured outcomes.


Asunto(s)
Hexaclorociclohexano/análogos & derivados , Ácido Láctico , Resistencia Física , Humanos , Resistencia Física/fisiología , Tolerancia al Ejercicio , Glucógeno/metabolismo , Dieta , Carbohidratos de la Dieta , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA