Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Neuro Oncol ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982561

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-ß). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-ß-mediated immune suppression in the TME. METHODS: We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-ß, which programs tumor-specific T cells to convert TGF-ß from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-ß CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS: Treatment with IL-13Rα2/TGF-ß CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSION: Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-ß, bispecific IL-13Rα2/TGF-ß CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.

2.
Cancer Res Commun ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856710

RESUMEN

Glioblastoma (GBM) is the most common malignant primary brain tumor and remains incurable. Previous work has shown that systemic administration of Decitabine (DAC) induces sufficient expression of cancer-testis antigens (CTA) in GBM for targeting by adoptive T-cell therapy in vivo. However, the mechanisms by which DAC enhances immunogenicity in GBM remain to be elucidated. Using NY-ESO-1 as a representative inducible CTA, we demonstrate in patient tissue, immortalized glioma cells, and primary patient-derived gliomaspheres that basal CTA expression is restricted by promoter hypermethylation in gliomas. DAC treatment of glioma cells specifically inhibits DNA methylation silencing to render NY-ESO-1 and other CTA into inducible tumor antigens at single cell resolution. Functionally, NY-ESO-1 TCR engineered effector cell targeting of DAC-induced antigen in primary glioma cells promotes specific and polyfunctional T cell cytokine profiles. In addition to induction of CTA, DAC concomitantly reactivates tumor-intrinsic human endogenous retroviruses, interferon response signatures, and MHC-I. Overall, we demonstrate that DAC induces targetable tumor antigen and enhances T cell functionality against GBM, ultimately contributing to the improvement of targeted immune therapies in glioma.

4.
Nat Commun ; 15(1): 3882, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719809

RESUMEN

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


Asunto(s)
Linfocitos T CD8-positivos , Vacunas contra el Cáncer , Carboximetilcelulosa de Sodio/análogos & derivados , Células Dendríticas , Glioma , Interferones , Poli I-C , Polilisina/análogos & derivados , Humanos , Células Dendríticas/inmunología , Células Dendríticas/efectos de los fármacos , Glioma/inmunología , Glioma/terapia , Femenino , Masculino , Persona de Mediana Edad , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Poli I-C/administración & dosificación , Poli I-C/farmacología , Adulto , Receptores Toll-Like/agonistas , Imidazoles/farmacología , Imidazoles/uso terapéutico , Anciano , Vacunación , Monocitos/inmunología , Monocitos/efectos de los fármacos , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de los fármacos , Inmunoterapia/métodos , Agonistas de los Receptores Toll-Like
5.
Res Sq ; 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37790490

RESUMEN

Autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination is a promising immunotherapy for patients with high grade gliomas, but responses have not been demonstrated in all patients. To determine the most effective combination of autologous tumor lysate-pulsed DC vaccination, with or without the adjuvant toll-like receptor (TLR) agonists poly-ICLC or resiquimod, we conducted a Phase 2 clinical trial in 23 patients with newly diagnosed or recurrent WHO Grade III-IV malignant gliomas. We then performed deep, high-dimensional immune profiling of these patients to better understand how TLR agonists may influence the systemic immune responses induced by ATL-DC vaccination. Bulk RNAseq data demonstrated highly significant upregulation of type 1 and type 2 interferon gene expression selectively in patients who received adjuvant a TLR agonist together with ATL-DC. CyTOF analysis of patient peripheral blood mononuclear cells (PBMCs) showed increased expression of PD-1 on CD4+ T-cells, decreases in CD38 and CD39 on CD8+ T cells and elevated proportion of monocytes after ATL-DC + TLR agonist administration. In addition, scRNA-seq demonstrated a higher expression fold change of IFN-induced genes with poly-ICLC treatment in both peripheral blood monocytes and T lymphocytes. Patients who had higher expression of interferon response genes lived significantly longer and had longer time to progression compared to those with lower expression. The results suggest that ATL-DC in conjunction with adjuvant poly-ICLC induces a polarized interferon response in circulating monocytes and specific activation of a CD8+ T cell population, which may represent an important blood biomarker for immunotherapy in this patient population. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01204684.

6.
J Clin Invest ; 133(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655659

RESUMEN

In comparison with responses in recurrent glioblastoma (rGBM), the intracranial response of brain metastases (BrM) to immune checkpoint blockade (ICB) is less well studied. Here, we present an integrated single-cell RNA-Seq (scRNA-Seq) study of 19 ICB-naive and 9 ICB-treated BrM samples from our own and published data sets. We compared them with our previously published scRNA-Seq data from rGBM and found that ICB led to more prominent T cell infiltration into BrM than rGBM. These BrM-infiltrating T cells exhibited a tumor-specific phenotype and displayed greater activated/exhausted features. We also used multiplex immunofluorescence and spatial transcriptomics to reveal that ICB reduced a distinct CD206+ macrophage population in the perivascular space, which may modulate T cell entry into BrM. Furthermore, we identified a subset of progenitor exhausted T cells that correlated with longer overall survival in BrM patients. Our study provides a comprehensive immune cellular landscape of ICB's effect on metastatic brain tumors and offers insights into potential strategies for improving ICB efficacy for brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Perfilación de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Macrófagos , Microambiente Tumoral
8.
Front Immunol ; 14: 1176994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435085

RESUMEN

Introduction: Increased T cell infiltration and interferon gamma (IFNγ) pathway activation are seen in tumors of melanoma patients who respond to ICI (immune checkpoint inhibitor) or MAPK pathway inhibitor (MAPKi) therapies. Yet, the rate of durable tumor control after ICI is almost twice that of MAPKi, suggesting that additional mechanisms may be present in patients responding to ICI therapy that are beneficial for anti-tumor immunity. Methods: We used transcriptional analysis and clinical outcomes from patients treated with ICI or MAPKi therapies to delineate immune mechanisms driving tumor response. Results: We discovered response to ICI is associated with CXCL13-driven recruitment of CXCR5+ B cells with significantly higher clonal diversity than MAPKi. Our in vitro data indicate that CXCL13 production was increased in human peripheral blood mononuclear cells by anti-PD1, but not MAPKi, treatment. Higher B cell infiltration and B cell receptor (BCR) diversity allows presentation of diverse tumor antigens by B cells, resulting in activation of follicular helper CD4 T cells (Tfh) and tumor reactive CD8 T cells after ICI therapy. Higher BCR diversity and IFNγ pathway score post-ICI are associated with significantly longer patient survival compared to those with either one or none. Conclusions: Response to ICI, but not to MAPKi, depends on the recruitment of CXCR5+ B cells into the tumor microenvironment and their productive tumor antigen presentation to follicular helper and cytotoxic, tumor reactive T cells. Our study highlights the potential of CXCL13 and B cell based strategies to enhance the rate of durable response in melanoma patients treated with ICI.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Melanoma , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Presentación de Antígeno , Leucocitos Mononucleares , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos B , Melanoma/tratamiento farmacológico , Microambiente Tumoral , Receptores CXCR5
9.
Proc Natl Acad Sci U S A ; 120(21): e2221116120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37192158

RESUMEN

Alternative splicing (AS) is prevalent in cancer, generating an extensive but largely unexplored repertoire of novel immunotherapy targets. We describe Isoform peptides from RNA splicing for Immunotherapy target Screening (IRIS), a computational platform capable of discovering AS-derived tumor antigens (TAs) for T cell receptor (TCR) and chimeric antigen receptor T cell (CAR-T) therapies. IRIS leverages large-scale tumor and normal transcriptome data and incorporates multiple screening approaches to discover AS-derived TAs with tumor-associated or tumor-specific expression. In a proof-of-concept analysis integrating transcriptomics and immunopeptidomics data, we showed that hundreds of IRIS-predicted TCR targets are presented by human leukocyte antigen (HLA) molecules. We applied IRIS to RNA-seq data of neuroendocrine prostate cancer (NEPC). From 2,939 NEPC-associated AS events, IRIS predicted 1,651 epitopes from 808 events as potential TCR targets for two common HLA types (A*02:01 and A*03:01). A more stringent screening test prioritized 48 epitopes from 20 events with "neoantigen-like" NEPC-specific expression. Predicted epitopes are often encoded by microexons of ≤30 nucleotides. To validate the immunogenicity and T cell recognition of IRIS-predicted TCR epitopes, we performed in vitro T cell priming in combination with single-cell TCR sequencing. Seven TCRs transduced into human peripheral blood mononuclear cells (PBMCs) showed high activity against individual IRIS-predicted epitopes, providing strong evidence of isolated TCRs reactive to AS-derived peptides. One selected TCR showed efficient cytotoxicity against target cells expressing the target peptide. Our study illustrates the contribution of AS to the TA repertoire of cancer cells and demonstrates the utility of IRIS for discovering AS-derived TAs and expanding cancer immunotherapies.


Asunto(s)
Neoplasias , Precursores del ARN , Masculino , Humanos , Precursores del ARN/metabolismo , Empalme Alternativo , Leucocitos Mononucleares/metabolismo , Receptores de Antígenos de Linfocitos T , Epítopos de Linfocito T , Inmunoterapia , Antígenos de Neoplasias , Péptidos/metabolismo , Neoplasias/genética , Neoplasias/terapia
10.
Signal Transduct Target Ther ; 8(1): 155, 2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-37069149

RESUMEN

Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Pulmonares , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Genes Supresores de Tumor , Neoplasias Pulmonares/genética
11.
Cancer Cell ; 41(2): 235-251.e9, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36638785

RESUMEN

Cancer immunotherapy critically depends on fitness of cytotoxic and helper T cell responses. Dysfunctional cytotoxic T cell states in the tumor microenvironment (TME) are a major cause of resistance to immunotherapy. Intratumoral myeloid cells, particularly blood-borne myeloids (bbm), are key drivers of T cell dysfunction in the TME. We show here that major histocompatibility complex class II (MHCII)-restricted antigen presentation on bbm is essential to control the growth of brain tumors. Loss of MHCII on bbm drives dysfunctional intratumoral tumor-reactive CD8+ T cell states through increased chromatin accessibility and expression of Tox, a critical regulator of T cell exhaustion. Mechanistically, MHCII-dependent activation of CD4+ T cells restricts myeloid-derived osteopontin that triggers a chronic activation of NFAT2 in tumor-reactive CD8+ T cells. In summary, we provide evidence that MHCII-restricted antigen presentation on bbm is a key mechanism to directly maintain functional cytotoxic T cell states in brain tumors.


Asunto(s)
Neoplasias Encefálicas , Linfocitos T Citotóxicos , Humanos , Presentación de Antígeno , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase II/metabolismo , Microambiente Tumoral
12.
NMR Biomed ; 36(6): e4785, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35704275

RESUMEN

Amine-weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is particularly valuable as an amine- and pH-sensitive imaging technique in brain tumors, targeting the intrinsically high concentration of amino acids with exchangeable amine protons and reduced extracellular pH in brain tumors. Amine-weighted CEST MRI contrast is dependent on the glioma genotype, likely related to differences in degree of malignancy and metabolic behavior. Amine-weighted CEST MRI may provide complementary value to anatomic imaging in conventional and exploratory therapies in brain tumors, including chemoradiation, antiangiogenic therapies, and immunotherapies. Continual improvement and clinical testing of amine-weighted CEST MRI has the potential to greatly impact patients with brain tumors by understanding vulnerabilities in the tumor microenvironment that may be therapeutically exploited.


Asunto(s)
Aminas , Neoplasias Encefálicas , Humanos , Aminas/química , Concentración de Iones de Hidrógeno , Imagen por Resonancia Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/química , Protones , Microambiente Tumoral
14.
Nat Cancer ; 3(1): 11-24, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121998

RESUMEN

Pediatric central nervous system tumors are the most common solid malignancies in childhood, and aggressive therapy often leads to long-term sequelae in survivors, making these tumors challenging to treat. Immunotherapy has revolutionized prospects for many cancer types in adults, but the intrinsic complexity of treating pediatric patients and the scarcity of clinical studies of children to inform effective approaches have hampered the development of effective immunotherapies in pediatric settings. Here, we review recent advances and ongoing challenges in pediatric brain cancer immunotherapy, as well as considerations for efficient clinical translation of efficacious immunotherapies into pediatric settings.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Neoplasias Encefálicas/terapia , Neoplasias del Sistema Nervioso Central/terapia , Niño , Humanos , Factores Inmunológicos , Inmunoterapia/efectos adversos , Sobrevivientes
15.
Neuro Oncol ; 24(6): 1020-1028, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34865129

RESUMEN

BACKGROUND: Diffusion MRI estimates of the apparent diffusion coefficient (ADC) have been shown to be useful in predicting treatment response in patients with glioblastoma (GBM), with ADC elevations indicating tumor cell death. We aimed to investigate whether the ADC values measured before and after treatment with immune checkpoint inhibitors (ICIs) and the changes in these ADC values could predict overall survival (OS) in patients with recurrent IDH wild-type GBM. METHODS: Forty-four patients who met the following inclusion criteria were included in this retrospective study: (i) diagnosed with recurrent IDH wild-type GBM and treated with either pembrolizumab or nivolumab and (ii) availability of diffusion data on pre- and post-ICI MRI. Tumor volume and the median relative ADC (rADC) with respect to the normal-appearing white matter within the enhancing tumor were calculated. RESULTS: Median OS among all patients was 8.1 months (range, 1.0-22.5 months). Log-rank test revealed that higher post-treatment rADC was associated with a significantly longer OS (median, 10.3 months for rADC ≥ 1.63 versus 6.1 months for rADC < 1.63; P = .02), whereas tumor volume, pretreatment rADC, and changes in rADC after treatment were not significantly associated with OS. Cox regression analysis revealed that post-treatment rADC significantly influenced OS (P = .02, univariate analysis), even after controlling for age and sex (P =.01, multivariate analysis), and additionally controlling for surgery after ICI treatment (P = .045, multivariate analysis). CONCLUSIONS: Elevated post-treatment rADC may be an early imaging biomarker for OS benefits in GBM patients receiving ICI treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Biomarcadores , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Estudios Retrospectivos
16.
Nat Commun ; 12(1): 6938, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836966

RESUMEN

Primary brain tumors, such as glioblastoma (GBM), are remarkably resistant to immunotherapy, even though pre-clinical models suggest effectiveness. To understand this better in patients, here we take advantage of our recent neoadjuvant treatment paradigm to map the infiltrating immune cell landscape of GBM and how this is altered following PD-1 checkpoint blockade using high dimensional proteomics, single cell transcriptomics, and quantitative multiplex immunofluorescence. Neoadjuvant PD-1 blockade increases T cell infiltration and the proportion of a progenitor exhausted population of T cells found within the tumor. We identify an early activated and clonally expanded CD8+ T cell cluster whose TCR overlaps with a CD8+ PBMC population. Distinct changes are also observed in conventional type 1 dendritic cells that may facilitate T cell recruitment. Macrophages and monocytes still constitute the majority of infiltrating immune cells, even after anti-PD-1 therapy. Interferon-mediated changes in the myeloid population are consistently observed following PD-1 blockade; these also mediate an increase in chemotactic factors that recruit T cells. However, sustained high expression of T-cell-suppressive checkpoints in these myeloid cells continue to prevent the optimal activation of the tumor infiltrating T cells. Therefore, future immunotherapeutic strategies may need to incorporate the targeting of these cells for clinical benefit.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Terapia Neoadyuvante/métodos , Recurrencia Local de Neoplasia/terapia , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/cirugía , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Procedimientos Neuroquirúrgicos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , RNA-Seq , Análisis de la Célula Individual , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Escape del Tumor/efectos de los fármacos , Macrófagos Asociados a Tumores/efectos de los fármacos , Macrófagos Asociados a Tumores/inmunología
17.
Curr Opin Neurol ; 34(6): 834-839, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608074

RESUMEN

PURPOSE OF REVIEW: In this review, we summarized recent findings that highlight the progress for checkpoint blockade immunotherapy in glioblastoma (GBM) patients. RECENT FINDINGS: We reviewed new data from our group and others that suggest that the timing of when immunotherapy is applied can impact the antitumor immune response and, potentially, the ultimate clinical benefit of patients. SUMMARY: The neoadjuvant priming and expansion of exhausted T cells within the GBM microenvironment, followed by the removal of an immune suppressive tumor microenvironment through surgical resection, may lead to enhanced antitumor immune responses that are beneficial clinically. As such, neoadjuvant immunotherapeutic approaches and rational combinations may be helpful scientifically to understand how immunotherapeutic interventions influence the tumor microenvironment, as well benefit the patients.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos , Inmunoterapia , Terapia Neoadyuvante , Microambiente Tumoral
18.
Nat Rev Clin Oncol ; 18(11): 729-744, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117475

RESUMEN

Immunotherapy has enabled remarkable therapeutic responses across cancers of various lineages, albeit with some notable exceptions such as glioblastoma. Several previous misconceptions, which have impaired progress in the past, including the presence and role of the blood-brain barrier and a lack of lymphatic drainage, have been refuted. Nonetheless, a subset of patients with brain metastases but, paradoxically, not the vast majority of those with gliomas are able to respond to immune-checkpoint inhibitors. Immune profiling of samples obtained from patients with central nervous system malignancies using techniques such as mass cytometry and single-cell sequencing along with experimental data from genetically engineered mouse models have revealed fundamental differences in immune composition and immunobiology that not only explain the differences in responsiveness to these agents but also lay the foundations for immunotherapeutic strategies that are applicable to gliomas. Herein, we review the emerging data on the differences in immune cell composition, function and interactions within central nervous system tumours and provide guidance on the development of novel immunotherapies for these historically difficult-to-treat cancers.


Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Inmunoterapia/métodos , Humanos
19.
Nat Commun ; 12(1): 4031, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34188042

RESUMEN

The response of patients with recurrent glioblastoma multiforme to neoadjuvant immune checkpoint blockade has been challenging to interpret due to the inter-patient and intra-tumor heterogeneity. We report on a comparative analysis of tumor tissues collected from patients with recurrent glioblastoma and high-risk melanoma, both treated with neoadjuvant checkpoint blockade. We develop a framework that uses multiplex spatial protein profiling, machine learning-based image analysis, and data-driven computational models to investigate the pathophysiological and molecular factors within the tumor microenvironment that influence treatment response. Using melanoma to guide the interpretation of glioblastoma analyses, we interrogate the protein expression in microscopic compartments of tumors, and determine the correlates of cytotoxic CD8+ T cells, tumor growth, treatment response, and immune cell-cell interaction. This work reveals similarities shared between glioblastoma and melanoma, immunosuppressive factors that are unique to the glioblastoma microenvironment, and potential co-targets for enhancing the efficacy of neoadjuvant immune checkpoint blockade.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Antígeno CTLA-4/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Adulto , Anciano , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/análisis , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos/inmunología , Femenino , Glioblastoma/patología , Humanos , Ipilimumab/uso terapéutico , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Nivolumab/uso terapéutico , Resultado del Tratamiento , Microambiente Tumoral/inmunología
20.
Neuro Oncol ; 23(3): 356-375, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33367885

RESUMEN

Cancer immunotherapy has made remarkable advances with over 50 separate Food and Drug Administration (FDA) approvals as first- or second-line indications since 2015. These include immune checkpoint blocking antibodies, chimeric antigen receptor-transduced T cells, and bispecific T-cell-engaging antibodies. While multiple cancer types now benefit from these immunotherapies, notable exceptions thus far include brain tumors, such as glioblastoma. As such, it seems critical to gain a better understanding of unique mechanistic challenges underlying the resistance of malignant gliomas to immunotherapy, as well as to acquire insights into the development of future strategies. An Immuno-Oncology Think Tank Meeting was held during the 2019 Annual Society for Neuro-Oncology Scientific Conference. Discussants in the fields of neuro-oncology, neurosurgery, neuro-imaging, medical oncology, and cancer immunology participated in the meeting. Sessions focused on topics such as the tumor microenvironment, myeloid cells, T-cell dysfunction, cellular engineering, and translational aspects that are critical and unique challenges inherent with primary brain tumors. In this review, we summarize the discussions and the key messages from the meeting, which may potentially serve as a basis for advancing the field of immune neuro-oncology in a collaborative manner.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Inmunoterapia , Oncología Médica , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA