Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Adv Parasitol ; 91: 1-86, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015947

RESUMEN

Malaria, caused by Plasmodium spp., continues to be a major threat to human health and a significant cause of socioeconomic hardship in many countries. Almost half of the world's population live in malaria-endemic regions and many of them suffer one or more, often life-threatening episodes of malaria every year, the symptoms of which are attributable to replication of the parasite within red blood cells (RBCs). In the case of Plasmodium falciparum, the species responsible for most malaria-related deaths, parasite replication within RBCs is accompanied by striking alterations to the morphological, biochemical and biophysical properties of the host cell that are essential for the parasites' survival. To achieve this, the parasite establishes a unique and extensive protein export network in the infected RBC, dedicating at least 6% of its genome to the process. Understanding the full gamut of proteins involved in this process and the mechanisms by which P. falciparum alters the structure and function of RBCs is important both for a more complete understanding of the pathogenesis of malaria and for development of new therapeutic strategies to prevent or treat this devastating disease. This review focuses on what is currently known about exported parasite proteins, their interactions with the RBC and their likely pathophysiological consequences.


Asunto(s)
Eritrocitos/parasitología , Plasmodium/fisiología , Proteínas Protozoarias/fisiología , Eritrocitos/fisiología , Eritrocitos/ultraestructura , Humanos , Chaperonas Moleculares/fisiología , Plasmodium/química , Transporte de Proteínas , Proteínas Protozoarias/metabolismo
2.
Biochim Biophys Acta ; 1848(7): 1619-1628, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25883090

RESUMEN

During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/metabolismo , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Antígenos de Protozoos/genética , Antígenos de Protozoos/metabolismo , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas del Citoesqueleto/metabolismo , Eritrocitos/parasitología , Eritrocitos/ultraestructura , Interacciones Huésped-Parásitos , Humanos , Immunoblotting , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Microscopía Confocal , Microscopía Electrónica de Rastreo , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Espectrina/metabolismo , Resonancia por Plasmón de Superficie
3.
FASEB J ; 28(7): 3103-13, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24706359

RESUMEN

The genomes of malaria parasites (Plasmodium spp.) contain a family of genes encoding proteins with a Plasmodium helical interspersed subtelomeric (PHIST) domain, most of which are predicted to be exported into the parasite-infected human red blood cell (iRBC). Here, using transgenic parasites and a combination of cellular, biochemical, and biophysical assays, we have characterized and determined the function of a novel member of the PHIST protein family in Plasmodium falciparum, termed lysine-rich membrane-associated PHISTb (LyMP). LyMP was shown to associate directly with the cytoskeleton of iRBCs where it plays a role in their abnormal ability to adhere to a protein expressed on vascular endothelial cells, resulting in sequestration. Deletion of LyMP dramatically reduced adhesion of iRBCs to CD36 by 55%, which was completely restored to wild-type levels on complementation. Intriguingly, in the absence of LyMP, formation of RBC membrane knobs and the level of surface exposure of the parasites' major cytoadhesive ligand, PfEMP1, were identical to those for the parental parasite line, demonstrating for the first time an additional mechanism that enhances cytoadherence of iRBCs beyond those already recognized. Our findings identify LyMP as a previously unknown RBC cytoskeletal-binding protein that is likely to be of major significance in the complex pathophysiology of falciparum malaria.-Proellocks, N. I., Herrmann, S., Buckingham, D. W., Hanssen, E., Hodges, E. K., Elsworth, B., Morahan, B. J., Coppel, R. L., Cooke, B. M. A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum infected red blood cells.


Asunto(s)
Adhesión Celular/fisiología , Citoesqueleto/metabolismo , Eritrocitos/metabolismo , Eritrocitos/parasitología , Lisina/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Membrana Celular/metabolismo , Membrana Celular/parasitología , Citoesqueleto/parasitología , Endotelio Vascular/metabolismo , Endotelio Vascular/parasitología , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Proteínas de la Membrana/metabolismo , Unión Proteica/fisiología
4.
J Biol Chem ; 285(39): 30050-60, 2010 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-20656688

RESUMEN

The highly complex and unique mycobacterial cell wall is critical to the survival of Mycobacteria in host cells. However, the biosynthetic pathways responsible for its synthesis are, in general, incompletely characterized. Rv3802c from Mycobacterium tuberculosis is a partially characterized phospholipase/thioesterase encoded within a genetic cluster dedicated to the synthesis of core structures of the mycobacterial cell wall, including mycolic acids and arabinogalactan. Enzymatic assays performed with purified recombinant proteins Rv3802c and its close homologs from Mycobacterium smegmatis (MSMEG_6394) and Corynebacterium glutamicum (NCgl2775) show that they all have significant lipase activities that are inhibited by tetrahydrolipstatin, an anti-obesity drug that coincidently inhibits mycobacterial cell wall biosynthesis. The crystal structure of MSMEG_6394, solved to 2.9 Å resolution, revealed an α/ß hydrolase fold and a catalytic triad typically present in esterases and lipases. Furthermore, we demonstrate direct evidence of gene essentiality in M. smegmatis and show the structural consequences of loss of MSMEG_6394 function on the cellular integrity of the organism. These findings, combined with the predicted essentiality of Rv3802c in M. tuberculosis, indicate that the Rv3802c family performs a fundamental and indispensable lipase-associated function in mycobacteria.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Lactonas/química , Lipasa/química , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Corynebacterium glutamicum/enzimología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Lactonas/farmacología , Lipasa/antagonistas & inhibidores , Lipasa/metabolismo , Orlistat , Estructura Terciaria de Proteína
5.
Trends Parasitol ; 26(6): 297-304, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20347614

RESUMEN

Apicomplexan parasites possess specialized secretory organelles (rhoptries and micronemes) that release their contents during host cell invasion. Although the rhoptries were once thought to be merely a bulbous 'protein reservoir' connected to an anterior neck region, the localization of a protein specifically to the neck suggested that this region was more than just a duct. Recent studies have shown that the rhoptry neck sub-compartment possesses a distinct protein repertoire. Some of these proteins share common features, including conservation across the phylum and involvement in tight-junction formation. A sub-group of rhoptry neck proteins, the RONs, their association with the microneme protein apical membrane antigen AMA1, and their involvement in invasion are discussed.


Asunto(s)
Apicomplexa/fisiología , Orgánulos/fisiología , Proteínas Protozoarias/fisiología , Animales , Apicomplexa/ultraestructura , Interacciones Huésped-Parásitos/fisiología , Orgánulos/ultraestructura
6.
Int J Parasitol ; 39(6): 683-92, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19073187

RESUMEN

The pathological consequences of malaria infection are the result of parasite replication within red blood cells (RBCs). Invasion into RBCs is mediated by a large repertoire of parasite proteins that are distributed on the parasite surface and within specialised apical secretory organelles. As invasion is an essential step in the parasite life-cycle, targeting invasion-related molecules provides an avenue for therapeutic intervention. We have used genome and transcriptome data available for Plasmodium falciparum to identify proteins likely to be involved in RBC invasion. Of these candidates, we selected a protein which we have dubbed PfRON6 for detailed characterisation. PfRON6 contains a novel cysteine-rich domain that is conserved in other Apicomplexan parasites. We show that PfRON6 is localised in the rhoptry neck of merozoites and is transferred to the newly formed parasitophorous vacuole during invasion. Transfection experiments indicate that the gene which encodes PfRON6 is refractory to integration that disrupts the coding sequence, suggesting its absence is incompatible with the parasite life-cycle. Further, the cysteine-rich domain appears to be functionally important as it cannot be truncated. Taken together, these data identify PfRON6 as a novel and potentially important component of the Plasmodium invasion machinery.


Asunto(s)
Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/genética , Factores de Virulencia/genética , Animales , Secuencia Conservada , Genes Esenciales , Humanos , Mutagénesis Insercional , Orgánulos/química , Plasmodium falciparum/química , Estructura Terciaria de Proteína , Proteínas Protozoarias/metabolismo , Eliminación de Secuencia , Factores de Virulencia/metabolismo
7.
Mol Biochem Parasitol ; 160(2): 143-7, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18482775

RESUMEN

In red blood cells (RBCs) infected with the malaria parasite Plasmodium falciparum, a 19-residue region of the mature parasite-infected erythrocyte surface antigen (MESA) associates with RBC cytoskeleton protein 4.1R; an interaction essential for parasite survival. This region in MESA is adjacent to a host targeting motif found in other malaria parasite proteins exported to the membrane skeleton. To demonstrate function of these motifs in vivo, regions of MESA fused to a reporter were expressed in malaria parasites. Immunochemical analyses confirmed the requirement for both motifs in the trafficking and interaction of MESA with the cytoskeleton and demonstrates their function in vivo.


Asunto(s)
Antígenos de Protozoos/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Membrana Eritrocítica/metabolismo , Eritrocitos/parasitología , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/fisiología , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Genes Reporteros , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Unión Proteica
8.
Int J Parasitol ; 37(11): 1233-41, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17521656

RESUMEN

Apicomplexan parasites are characterised by the presence of specialised organelles, such as rhoptries, located at the apical end of invasive forms that play an important role in invasion of the host cell and formation of the parasitophorous vacuole. In this study, we have characterised a novel Plasmodium falciparum rhoptry protein, Pf34, encoded by a single exon gene located on chromosome 4 and expressed as a 34kDa protein in mature asexual stage parasites. Pf34 is expressed later in the life cycle than the previously described rhoptry protein, Rhoptry Associated Membrane Antigen (RAMA). Orthologues of Pf34 are present in other Plasmodium species and a potential orthologue has also been identified in Toxoplasma gondii. Indirect immunofluorescence assays show that Pf34 is located at the merozoite apex and localises to the rhoptry neck. Pf34, previously demonstrated to be glycosyl-phosphatidyl-inositol (GPI)-anchored [Gilson, P.R., Nebl, T., Vukcevic, D., Moritz, R.L., Sargeant, T., Speed, T.P., Schofield, L., Crabb, B.S. (2006) Identification and stoichiometry of GPI-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol. Cell. Proteomics 5, 1286-1299.], is associated with parasite-derived detergent-resistant microdomains (DRMs). Pf34 is carried into the newly invaded ring, consistent with a role for Pf34 in the formation of the parasitophorous vacuole. Pf34 is exposed to the human immune system during infection and is recognised by human immune sera collected from residents of malaria endemic areas of Vietnam and Papua New Guinea.


Asunto(s)
Glicoproteínas de Membrana/genética , Microdominios de Membrana , Plasmodium falciparum/química , Proteínas Protozoarias/genética , Animales , Clonación Molecular , Detergentes , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente Indirecta , Genoma de Protozoos , Glicosilfosfatidilinositoles/metabolismo , Interacciones Huésped-Parásitos , Humanos , Malaria Falciparum/inmunología , Glicoproteínas de Membrana/análisis , Merozoítos/química , Microscopía Confocal , Papúa Nueva Guinea , Plasmodium falciparum/fisiología , Proteínas Protozoarias/análisis , Vietnam
9.
Trends Parasitol ; 22(6): 269-76, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16635585

RESUMEN

Plasmodium parasites have three sets of specialised secretory organelles at the apical end of their invasive forms--rhoptries, micronemes and dense granules. The contents of these organelles are responsible for or contribute to host cell invasion and modification, and at least four apical proteins are leading vaccine candidates. Given the unusual nature of Plasmodium invasion, it is not surprising that unique proteins are involved in this process. Nowhere is this more evident than in rhoptries. We have collated data from several recent studies to compile a rhoptry proteome. Discussion is focussed here on rhoptry content and function.


Asunto(s)
Eritrocitos/parasitología , Orgánulos/fisiología , Plasmodium/fisiología , Proteínas Protozoarias/fisiología , Animales , Interacciones Huésped-Parásitos , Humanos , Orgánulos/ultraestructura , Plasmodium/patogenicidad , Plasmodium/ultraestructura , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA