Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Virol J ; 21(1): 246, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370512

RESUMEN

BACKGROUND: Human adenoviruses (HAdVs) frequently cause common respiratory or gastrointestinal infections among children, adults, individuals with immune deficiencies, and other vulnerable populations with varying degree of symptoms, ranging from mild to server, and in some cases, even fatalities. Despite the significant clinical impact of HAdVs, there is currently no approved vaccine available. METHODS: This study explores the potential of the adenovirus type 5 fiber knob (Ad5-FK) to stimulate the production of Ad-specific neutralizing antibodies and T-cell responses in mice. Based on structure predictions, we first expressed Ad5-FK in E. coli and confirmed the assembly of FK into its trimeric form. After testing the binding capability of the trimeric FK to susceptible cells, the immunogenicity of the protein in combination with the c-di-AMP adjuvant was assessed in BALB/c mice. RESULTS: The purified Ad5-FK exhibited self-trimerization and maintained correct conformation akin to the authentic FK structure. This facilitated effective binding to susceptible HEK293 cells. Notably, the protein demonstrated significant inhibition of HEK293 cells infection by rAd5-GFP. Immunization of BALB/c mice with Ad5-FK, or Ad5-FK mixed with c-di-AMP yielded FK-specific antibodies with potent neutralization capacity. Significantly, Ad5-FK was found to elicit a vigorous CD4+ T-cell response in the immunized mice. CONCLUSION: Our findings underscore the efficacy of FK-based vaccine in eliciting anti-Ad humoral immune response and CD4 T-cell immune reactions essential for protection against viral infections.


Asunto(s)
Adenovirus Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones Endogámicos BALB C , Animales , Anticuerpos Neutralizantes/inmunología , Humanos , Anticuerpos Antivirales/inmunología , Ratones , Células HEK293 , Adenovirus Humanos/inmunología , Adenovirus Humanos/genética , Linfocitos T/inmunología , Proteínas de la Cápside/inmunología , Proteínas de la Cápside/genética , Femenino , Vacunación , Vacunas contra el Adenovirus/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Infecciones por Adenoviridae/inmunología , Infecciones por Adenoviridae/prevención & control , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/prevención & control , Infecciones por Adenovirus Humanos/virología
2.
Microbes Infect ; : 105412, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236991

RESUMEN

Human norovirus (HuNoV) is a major global cause of acute gastroenteritis, with vaccine development facing several challenges. Despite years of research, there are currently no licensed vaccines available for controlling HuNoVs. Here, we describe the construction and testing of a replication-deficient Sendai virus (SeV) vector as a potential vaccine candidate against the HuNoV GII.4 genotype. SeV was chosen as the vaccine backbone due to its non-pathogenic nature in humans, its capability for long-term antigen expression in mammalian cells, and its suitability for mucosal administration. By inserting the HuNoV GII.4 capsid gene, VP1, into the SeV genome, we generated a replication-deficient SeV (SeV/dP.VP1) vector. The resultant SeV/dP.VP1 virus were observed to successfully express the inserted NoV VP1 gene upon infection. Inoculating the vaccine into wild-type mice elicited NoV-specific IgG antibodies, along with INF-γ and IL-2-producing T cells, through both intranasal (i.n.) and intramuscular (i.m.) immunization. Furthermore, a significant level of NoV-specific IgA was detected in lung homogenates after i.n. immunization, particularly using a high dose of the viral vector. Additionally, a synergistic effect was observed with heterologous prime-boost regimens using SeV/dP.VP1 and MVA.VP1 vectors, indicating the potential for more robust immune responses when the vaccine design is optimized. Our study demonstrates the potential of a SeV vaccine candidate in eliciting a broad immune response and lays the foundation for further exploration of the SeV vector platform's potential as a HuNoV vaccine. Additionally, the results emphasize the importance of vaccine dosage and administration route, highlighting the need for tailored immunization strategies.

3.
JHEP Rep ; 6(10): 101128, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39290403

RESUMEN

Background & Aims: Although most hepatocellular carcinoma (HCC) cases are driven by hepatitis and cirrhosis, a subset of patients with chronic hepatitis B develop HCC in the absence of advanced liver disease, indicating the oncogenic potential of hepatitis B virus (HBV). We investigated the role of HBV transcripts and proteins on HCC development in the absence of inflammation in HBV-transgenic mice. Methods: HBV-transgenic mice replicating HBV and expressing all HBV proteins from a single integrated 1.3-fold HBV genome in the presence or absence of wild-type HBx (HBV1.3/HBVxfs) were analyzed. Flow cytometry, molecular, histological and in vitro analyses using human cell lines were performed. Hepatocyte-specific Stat3- and Socs3-knockout was analyzed in HBV1.3 mice. Results: Approximately 38% of HBV1.3 mice developed liver tumors. Protein expression patterns, histology, and mutational landscape analyses indicated that tumors resembled human HCC. HBV1.3 mice showed no signs of active hepatitis, except STAT3 activation, up to the time point of HCC development. HBV-RNAs covering HBx sequence, 3.5-kb HBV RNA and HBx-protein were detected in HCC tissue. Interestingly, HBVxfs mice expressing all HBV proteins except a C-terminally truncated HBx (without the ability to bind DNA damage binding protein 1) showed reduced signs of DNA damage response and had a significantly reduced HCC incidence. Importantly, intercrossing HBV1.3 mice with a hepatocyte-specific STAT3-knockout abrogated HCC development. Conclusions: Expression of HBV-proteins is sufficient to cause HCC in the absence of detectable inflammation. This indicates the oncogenic potential of HBV and in particular HBx. In our model, HBV-driven HCC was STAT3 dependent. Our study highlights the immediate oncogenic potential of HBV, challenging the idea of a benign highly replicative phase of HBV infection and indicating the necessity for an HBV 'cure'. Impact and implications: Although most HCC cases in patients with chronic HBV infection occur after a sequence of liver damage and fibrosis, a subset of patients develops HCC without any signs of advanced liver damage. We demonstrate that the expression of all viral transcripts in HBV-transgenic mice suffices to induce HCC development independent of inflammation and fibrosis. These data indicate the direct oncogenic effects of HBV and emphasize the idea of early antiviral treatment in the 'immune-tolerant' phase (HBeAg-positive chronic HBV infection).

4.
Vaccines (Basel) ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39203997

RESUMEN

Patients with hematologic malignancies still face a significant risk of severe coronavirus disease 2019 (COVID-19). The severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-neutralizing monoclonal antibody combination tixagevimab/cilgavimab (TIX/CGB) could be administered to immunocompromised patients for pre-exposure prophylaxis (PrEP) before the emergence of TIX/CGB-resistant COVID-19 Omicron variants. TIX/CGB application could be carried out regardless of the host's immune response to previous active SARS-CoV-2 vaccinations or infections. Because the efficacy of COVID-19 PrEP remains unclear, especially in SARS-CoV-2-seropositive patients, German national guidelines recommended TIX/CGB PrEP only for SARS-CoV-2-seronegative patients in addition to an intensified active vaccination schedule. Having followed these guidelines, we now report the characteristics and outcomes of 54 recipients of TIX/CGB PrEP in SARS-CoV-2-seronegative patients with hematological disease from a German tertiary medical center and compare them to 125 seropositive patients who did not receive any PrEP. While the number of patients with B-cell lymphomas was significantly higher in the seronegative cohort (33 (61%) vs. 18 (14%) cases, p < 0.01), patients with myeloid diseases were significantly more frequent in the seropositive cohort (51 (41%) vs. 5 (9%) cases, p < 0.01). Strikingly, patients who had undergone allogeneic hematopoietic stem cell transplantation were significantly more likely (forty-nine (39%) vs. six (11%) cases, p < 0.01) to be SARS-CoV-2 seropositive. We observed that prophylactic application of TIX/CGB PrEP to a highly vulnerable group of SARS-CoV-2-seronegative patients resulted in a similar number of COVID-19 breakthrough infections compared to the untreated seropositive control group (16 (32%) vs. 39 (36%), p = 0.62) and comparable COVID-19-related outcomes like hospitalization and oxygen requirement throughout an extended follow-up period of 12 months. In conclusion, our results support the tailored approach of administering TIX/CGB PrEP only to SARS-CoV-2-seronegative patients during the COVID-19 pandemic and might provide a rationale for similar strategies during future outbreaks/diseases, especially in times of initial limited availability and/or financial constraints.

5.
Nat Commun ; 15(1): 6778, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39117661

RESUMEN

Multiple omics analyzes of Vaccinia virus (VACV) infection have defined molecular characteristics of poxvirus biology. However, little is known about the monkeypox (mpox) virus (MPXV) in humans, which has a different disease manifestation despite its high sequence similarity to VACV. Here, we perform an in-depth multi-omics analysis of the transcriptome, proteome, and phosphoproteome signatures of MPXV-infected primary human fibroblasts to gain insights into the virus-host interplay. In addition to expected perturbations of immune-related pathways, we uncover regulation of the HIPPO and TGF-ß pathways. We identify dynamic phosphorylation of both host and viral proteins, which suggests that MAPKs are key regulators of differential phosphorylation in MPXV-infected cells. Among the viral proteins, we find dynamic phosphorylation of H5 that influenced the binding of H5 to dsDNA. Our extensive dataset highlights signaling events and hotspots perturbed by MPXV, extending the current knowledge on poxviruses. We use integrated pathway analysis and drug-target prediction approaches to identify potential drug targets that affect virus growth. Functionally, we exemplify the utility of this approach by identifying inhibitors of MTOR, CHUK/IKBKB, and splicing factor kinases with potent antiviral efficacy against MPXV and VACV.


Asunto(s)
Fibroblastos , Monkeypox virus , Mpox , Proteínas Virales , Humanos , Monkeypox virus/genética , Fosforilación , Mpox/virología , Mpox/metabolismo , Fibroblastos/virología , Fibroblastos/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteoma/metabolismo , Interacciones Huésped-Patógeno , Transducción de Señal , Proteómica/métodos , Transcriptoma , Antivirales/farmacología , Multiómica
6.
Med Microbiol Immunol ; 213(1): 18, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101951

RESUMEN

Outbreaks of emerging diseases, like Mpox in 2022, pose unprecedented challenges to global healthcare systems. Although Mpox cases globally decreased since the end of 2022, numbers are still significant in the African Region, European Region, Region of the Americas, and Western Pacific Region. Rapid and efficient detection of infected individuals by precise screening assays is crucial for successful containment. In these assays, analytical and clinical performance must be assessed to ensure high quality. However, clinical studies evaluating Mpox virus (MPXV) detection kits using patient-derived samples are scarce. This study evaluated the analytical and clinical performance of a new diagnostic MPXV real-time PCR detection kit (Sansure Monkeypox Virus Nucleic Acid Diagnostic Kit) using patient-derived samples collected in Germany during the MPXV clade IIb outbreak in 2022. Our experimental approach determined the Limit of Detection (LoD) to less than 200 cp/mL using whole blood samples and samples derived from vesicles or pustules. Furthermore, we tested potentially inhibiting substances and pathogens with homologous nucleic acid sequences or similar clinical presentation and detected no cross-reactivity or interference. Following this, the assay was compared to a CE-marked test in a clinical performance study and achieved a diagnostic sensitivity of 100.00% and diagnostic specificity of 96.97%. In summary, the investigated real-time PCR assay demonstrates high analytical performance and concurs with the competitor device with high specificity and sensitivity.


Asunto(s)
Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Alemania/epidemiología , Mpox/diagnóstico , Mpox/virología , Juego de Reactivos para Diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Límite de Detección , Brotes de Enfermedades , Parapoxvirus/aislamiento & purificación , Parapoxvirus/genética
7.
Methods Mol Biol ; 2837: 207-218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39044087

RESUMEN

Mice infected with a recombinant adeno-associated virus carrying a replication-competent hepatitis B virus genome (rAAV-HBV) via the intravenous route establish a persistent HBV replication in hepatocytes and develop immune tolerance. They serve as models to evaluate antiviral immunity and to assess potential therapeutic approaches for chronic HBV infection. Combining selected HBV variants and different mouse genotypes allows for addressing a broad spectrum of research questions. This chapter describes the basic principles of the rAAV-HBV mouse model, rAAV-HBV production and purification methods, and finally, the in vivo application.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Virus de la Hepatitis B , Replicación Viral , Animales , Dependovirus/genética , Dependovirus/aislamiento & purificación , Virus de la Hepatitis B/genética , Ratones , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Humanos , Hepatitis B Crónica/virología , Hepatitis B Crónica/inmunología , Hepatitis B/virología , Hepatitis B/inmunología
8.
One Health ; 18: 100674, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010962

RESUMEN

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis worldwide. Up to now, no approved treatment nor a globally licensed vaccine is available. Several recombinant HEV vaccines have been developed to protect against HEV infection in humans, including the commercially available Hecolin vaccine, which are mainly based on HEV genotype 1. However, the efficacy of these vaccines against other HEV genotypes, especially genotype 3 is unknown. In this study, we evaluated the protective efficacy of Hecolin® and a novel genotype 3-based vaccine p239(gt3) against HEV-3 in a pig infection model. Pigs were divided into three groups: one group was vaccinated with Hecolin®, the second group was vaccinated with p239(gt3), and the control group received no vaccine. All pigs were subsequently challenged with HEV genotype 3 to assess the effectiveness of the vaccines. Although all immunised animals developed a high titer of neutralizing antibodies, the results showed that both vaccine applications could not provide complete protection against HEV (gt3) infection: Two out of four animals of the Hecolin® group displayed even virus shedding, and viral RNA could be detected in bile and/or liver of three out of four animals in both vaccination groups. Only one out of four animals in each group was fully protected. Neither Hecolin® nor the novel p239(gt3) vaccine provided sufficient protection against genotype 3 infection. While Hecolin® only partial protected pigs from HEV shedding, the novel p239(gt3) vaccine was at least able to prevent infected pigs from virus shedding. The results highlight the need for further development of HEV vaccines that exhibit broad protection against multiple HEV genotypes and the use of appropriate animal infection models.

9.
ACS Appl Mater Interfaces ; 16(28): 37275-37287, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38959130

RESUMEN

Titanium dioxide (TiO2) shows significant potential as a self-cleaning material to inactivate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and prevent virus transmission. This study provides insights into the impact of UV-A light on the photocatalytic inactivation of adsorbed SARS-CoV-2 virus-like particles (VLPs) on a TiO2 surface at the molecular and atomic levels. X-ray photoelectron spectroscopy, combined with density functional theory calculations, reveals that spike proteins can adsorb on TiO2 predominantly via their amine and amide functional groups in their amino acids blocks. We employ atomic force microscopy and grazing-incidence small-angle X-ray scattering (GISAXS) to investigate the molecular-scale morphological changes during the inactivation of VLPs on TiO2 under light irradiation. Notably, in situ measurements reveal photoinduced morphological changes of VLPs, resulting in increased particle diameters. These results suggest that the denaturation of structural proteins induced by UV irradiation and oxidation of the virus structure through photocatalytic reactions can take place on the TiO2 surface. The in situ GISAXS measurements under an N2 atmosphere reveal that the virus morphology remains intact under UV light. This provides evidence that the presence of both oxygen and UV light is necessary to initiate photocatalytic reactions on the surface and subsequently inactivate the adsorbed viruses. The chemical insights into the virus inactivation process obtained in this study contribute significantly to the development of solid materials for the inactivation of enveloped viruses.


Asunto(s)
SARS-CoV-2 , Titanio , Rayos Ultravioleta , Titanio/química , Titanio/efectos de la radiación , SARS-CoV-2/efectos de la radiación , SARS-CoV-2/química , Inactivación de Virus/efectos de la radiación , Inactivación de Virus/efectos de los fármacos , Humanos , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , COVID-19/virología , COVID-19/prevención & control , Adsorción , Propiedades de Superficie
10.
Nature ; 631(8022): 867-875, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987588

RESUMEN

Chronic hepatitis B virus (HBV) infection affects 300 million patients worldwide1,2, in whom virus-specific CD8 T cells by still ill-defined mechanisms lose their function and cannot eliminate HBV-infected hepatocytes3-7. Here we demonstrate that a liver immune rheostat renders virus-specific CD8 T cells refractory to activation and leads to their loss of effector functions. In preclinical models of persistent infection with hepatotropic viruses such as HBV, dysfunctional virus-specific CXCR6+ CD8 T cells accumulated in the liver and, as a characteristic hallmark, showed enhanced transcriptional activity of cAMP-responsive element modulator (CREM) distinct from T cell exhaustion. In patients with chronic hepatitis B, circulating and intrahepatic HBV-specific CXCR6+ CD8 T cells with enhanced CREM expression and transcriptional activity were detected at a frequency of 12-22% of HBV-specific CD8 T cells. Knocking out the inhibitory CREM/ICER isoform in T cells, however, failed to rescue T cell immunity. This indicates that CREM activity was a consequence, rather than the cause, of loss in T cell function, further supported by the observation of enhanced phosphorylation of protein kinase A (PKA) which is upstream of CREM. Indeed, we found that enhanced cAMP-PKA-signalling from increased T cell adenylyl cyclase activity augmented CREM activity and curbed T cell activation and effector function in persistent hepatic infection. Mechanistically, CD8 T cells recognizing their antigen on hepatocytes established close and extensive contact with liver sinusoidal endothelial cells, thereby enhancing adenylyl cyclase-cAMP-PKA signalling in T cells. In these hepatic CD8 T cells, which recognize their antigen on hepatocytes, phosphorylation of key signalling kinases of the T cell receptor signalling pathway was impaired, which rendered them refractory to activation. Thus, close contact with liver sinusoidal endothelial cells curbs the activation and effector function of HBV-specific CD8 T cells that target hepatocytes expressing viral antigens by means of the adenylyl cyclase-cAMP-PKA axis in an immune rheostat-like fashion.


Asunto(s)
Linfocitos T CD8-positivos , Hepatitis B Crónica , Hígado , Animales , Humanos , Masculino , Ratones , Linfocitos T CD8-positivos/enzimología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Modulador del Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Hepatocitos/inmunología , Hepatocitos/virología , Hígado/inmunología , Hígado/virología , Fosforilación , Transducción de Señal , Activación de Linfocitos
11.
Antiviral Res ; 229: 105972, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39084340

RESUMEN

Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.


Asunto(s)
Inmunidad Adaptativa , Anticuerpos Biespecíficos , Virus de la Hepatitis B , Hepatitis B Crónica , Inmunoterapia , Linfocitos T , Humanos , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/terapia , Anticuerpos Biespecíficos/uso terapéutico , Anticuerpos Biespecíficos/inmunología , Linfocitos T/inmunología , Virus de la Hepatitis B/inmunología , Inmunoterapia/métodos , Antivirales/uso terapéutico , Antivirales/farmacología , Animales
12.
J Med Virol ; 96(6): e29739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899449

RESUMEN

This longitudinal prospective controlled multicenter study aimed to monitor immunity generated by three exposures caused by breakthrough infections (BTI) after COVID-19-vaccination considering pre-existing cell-mediated immunity to common-corona-viruses (CoV) which may impact cellular reactivity against SARS-CoV-2. Anti-SARS-CoV-2-spike-IgG antibodies (anti-S-IgG) and cellular reactivity against Spike-(S)- and nucleocapsid-(N)-proteins were determined in fully-vaccinated (F) individuals who either experienced BTI (F+BTI) or had booster vaccination (F+Booster) compared to partially vaccinated (P+BTI) and unvaccinated (U) from 1 to 24 weeks post PCR-confirmed infection. High avidity anti-S-IgG were found in F+BTI compared to U, the latter exhibiting increased long-lasting pro-inflammatory cytokines to S-stimulation. CoV was associated with higher cellular reactivity in U, whereas no association was seen in F. The study illustrates the induction of significant S-specific cellular responses in F+BTI building-up basic immunity by three exposures. Only U seem to benefit from pre-existing CoV immunity but demonstrated inflammatory immune responses compared to F+BTI who immunologically benefit from enhanced humoral and cellular immunity after BTI. This study demonstrates that individuals with hybrid immunity from COVID-19-vaccination and BTI acquire a stable humoral and cellular immune response that is maintained for at least 6 months. Our findings corroborate recommendations by health authorities to build on basic immunity by three S-protein exposures.


Asunto(s)
Anticuerpos Antivirales , Vacunas contra la COVID-19 , COVID-19 , Inmunidad Celular , Glicoproteína de la Espiga del Coronavirus , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Vacuna BNT162/inmunología , Vacuna BNT162/administración & dosificación , Infección Irruptiva/inmunología , Infección Irruptiva/prevención & control , Proteínas de la Nucleocápside de Coronavirus/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Citocinas/inmunología , Inmunización Secundaria , Inmunoglobulina G/sangre , Estudios Longitudinales , Fosfoproteínas/inmunología , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
13.
Virol J ; 21(1): 139, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877590

RESUMEN

BACKGROUND: Infection with the Epstein-Barr virus (EBV) elicits a complex T-cell response against a broad range of viral proteins. Hence, identifying potential differences in the cellular immune response of patients with different EBV-associated diseases or different courses of the same disorder requires interrogation of a maximum number of EBV antigens. Here, we tested three novel EBV-derived antigen formulations for their ability to reactivate virus-specific T cells ex vivo in patients with EBV-associated infectious mononucleosis (IM). METHODS: We comparatively analyzed EBV-specific CD4+ and CD8+ T-cell responses to three EBV-derived antigen formulations in 20 pediatric patients during the early phase of IM: T-activated EBV proteins (BZLF1, EBNA3A) and EBV-like particles (EB-VLP), both able to induce CD4+ and CD8+ T-cell responses ex vivo, as well as an EBV-derived peptide pool (PP) covering 94 well-characterized CD8+ T-cell epitopes. We assessed the specificity, magnitude, kinetics, and functional characteristics of EBV-specific immune responses at two sequential time points (v1 and v2) within the first six weeks after IM symptom onset (Tonset). RESULTS: All three tested EBV-derived antigen formulations enabled the detection of EBV-reactive T cells during the early phase of IM without prior T-cell expansion in vitro. EBV-reactive CD4+ and CD8+ T cells were mainly mono-functional (CD4+: mean 64.92%, range 56.15-71.71%; CD8+: mean 58.55%, range 11.79-85.22%) within the first two weeks after symptom onset (v1) with IFN-γ and TNF-secreting cells representing the majority of mono-functional EBV-reactive T cells. By contrast, PP-reactive CD8+ T cells were primarily bi-functional (>60% at v1 and v2), produced IFN-γ and TNF and had more tri-functional than mono-functional components. We observed a moderate correlation between viral load and EBNA3A, EB-VLP, and PP-reactive CD8+ T cells (rs = 0.345, 0.418, and 0.356, respectively) within the first two weeks after Tonset, but no correlation with the number of detectable EBV-reactive CD4+ T cells. CONCLUSIONS: All three EBV-derived antigen formulations represent innovative and generic recall antigens suitable for monitoring EBV-specific T-cell responses ex vivo. Their combined use facilitates a thorough analysis of EBV-specific T-cell immunity and allows the identification of functional T-cell signatures linked to disease development and severity.


Asunto(s)
Antígenos Virales , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Herpesvirus Humano 4 , Mononucleosis Infecciosa , Humanos , Mononucleosis Infecciosa/inmunología , Mononucleosis Infecciosa/virología , Antígenos Virales/inmunología , Herpesvirus Humano 4/inmunología , Niño , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD4-Positivos/inmunología , Femenino , Masculino , Adolescente , Preescolar , Epítopos de Linfocito T/inmunología
14.
J Control Release ; 371: 179-192, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795814

RESUMEN

The delivery of vaccines plays a pivotal role in influencing the strength and longevity of the immune response and controlling reactogenicity. Mucosal immunization, as compared to parenteral vaccination, could offer greater protection against respiratory infections while being less invasive. While oral vaccination has been presumed less effective and believed to target mainly the gastrointestinal tract, trans-buccal delivery using mucoadhesive films (MAF) may allow targeted delivery to the mucosa. Here we present an effective strategy for mucosal delivery of several vaccine platforms incorporated in MAF, including DNA plasmids, viral vectors, and lipid nanoparticles incorporating mRNA (mRNA/LNP). The mRNA/LNP vaccine formulation targeting SARS-CoV-2 as a proof of concept remained stable within MAF consisting of slowly releasing water-soluble polymers and an impermeable backing layer, facilitating enhanced penetration into the oral mucosa. This formulation elicited antibody and cellular responses comparable to the intramuscular injection, but also induced the production of mucosal IgAs, highlighting its efficacy, particularly for use as a booster vaccine and the potential advantage for protection against respiratory infections. The MAF vaccine preparation demonstrates significant advantages, such as efficient delivery, stability, and simple noninvasive administration with the potential to alleviate vaccine hesitancy.


Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Animales , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Administración Oral , Nanopartículas/administración & dosificación , Mucosa Bucal/inmunología , COVID-19/prevención & control , Femenino , Ratones Endogámicos BALB C , SARS-CoV-2/inmunología , Ratones , Sistemas de Liberación de Medicamentos/métodos , Humanos , Lípidos/química , Lípidos/administración & dosificación , ARN Mensajero/administración & dosificación , Liposomas
15.
Clin Mol Hepatol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808361

RESUMEN

Background and Aims: HBV-DNA integration in HBV-related hepatocellular carcinoma (HBV-HCC) can be targeted by HBV-specific T cells. SCG101 is an autologous, HBV-specific T-cell product expressing a T-cell receptor (TCR) after lentiviral transduction recognizing the envelope-derived peptide (S20-28) on HLA-A2. We here validated its safety and efficacy preclinically and applied it in an HBV-related HCC patient (NCT05339321). Methods: GMP-grade manufactured cells were assessed for off-target reactivity and functionality against hepatoma cells. Subsequently, a patient with advanced HBV-HCC (Child-Pugh:A, BCLC:B, ECOG:0, HBeAg-, serum HBsAg+, hepatocytes 10% HBsAg+) received 7.9x107 cells/kg after lymphodepletion. Safety, T-cell persistence, and antiviral and antitumor efficacy were evaluated. Results: SCG101, produced at high numbers in a closed-bag system, showed HBV-specific functionality against HBV-hepatoma cells in vitro and in vivo. Clinically, treatment was well tolerated, and all adverse events, including transient hepatic damage, were reversible. On day 3, ALT levels increased to 1404 U/ml, and concurrently, serum HBsAg started decreasing by 3.84log and remained <1 IU/ml for over six months. HBsAg expressing hepatocytes in liver biopsies were undetectable after73 days. The patient achieved a partial response according to mRECIST score with a >70% reduction of target lesion size. Transferred T cells expanded, developed a stem cell-like memory phenotype, and were still detectable after six months in the patient's blood. Conclusions: SCG101 T-cell therapy showed encouraging efficacy and safety in pre-clinical models and in a patient with primary HBV-HCC and concomitant chronic hepatitis B with the capability to eliminate HBsAg+ cells and achieve sustained tumor control after single dosing.

16.
ACS Appl Mater Interfaces ; 16(20): 25836-25842, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728653

RESUMEN

We demonstrate the use of DNA origami to create virus-trapping nanoshells that efficiently neutralize hepatitis B virus (HBV) in cell culture. By modification of the shells with a synthetic monoclonal antibody that binds to the HBV envelope, the effective neutralization potency per antibody is increased by approximately 100 times compared to using free antibodies. The improvements in neutralizing the virus are attributed to two factors: first, the shells act as a physical barrier that blocks the virus from interacting with host cells; second, the multivalent binding of the antibodies inside the shells lead to stronger attachment to the trapped virus, a phenomenon known as avidity. Pre-incubation of shells with HBV and simultaneous addition of both components separately to cells lead to comparable levels of neutralization, indicating rapid trapping of the virions by the shells. Our study highlights the potential of the DNA shell system to rationally create antivirals using components that, when used individually, show little to no antiviral effectiveness.


Asunto(s)
ADN , Virus de la Hepatitis B , Nanocáscaras , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Nanocáscaras/química , ADN/química , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Pruebas de Neutralización , Antivirales/química , Antivirales/farmacología
17.
Viruses ; 16(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38793623

RESUMEN

Hepatitis B virus (HBV) is a major driver of chronic hepatic inflammation, which regularly leads to liver cirrhosis or hepatocellular carcinoma. Immediate innate immune cell response is crucial for the rapid clearance of the infection. Here, natural killer (NK) cells play a pivotal role in direct cytotoxicity and the secretion of antiviral cytokines as well as regulatory function. The aim of this study was to further elucidate NK cell responses triggered by an HBV infection. Therefore, we optimized HBV in vitro models that reliably stimulate NK cells using hepatocyte-like HepG2 cells expressing the Na+-taurocholate co-transporting polypeptide (NTCP) and HepaRG cells. Immune cells were acquired from healthy platelet donors. Initially, HepG2-NTCP cells demonstrated higher viral replication compared to HepaRG cells. Co-cultures with immune cells revealed increased production of interferon-γ and tumor necrosis factor-α by NK cells, which was no longer evident in isolated NK cells. Likewise, the depletion of monocytes and spatial separation from target cells led to the absence of the antiviral cytokine production of NK cells. Eventually, the combined co-culture of isolated NK cells and monocytes led to a sufficient cytokine response of NK cells, which was also apparent when communication between the two immune cell subpopulations was restricted to soluble factors. In summary, our study demonstrates antiviral cytokine production by NK cells in response to HBV+ HepG2-NTCP cells, which is dependent on monocyte bystander activation.


Asunto(s)
Técnicas de Cocultivo , Citocinas , Virus de la Hepatitis B , Hepatitis B , Células Asesinas Naturales , Monocitos , Humanos , Células Asesinas Naturales/inmunología , Monocitos/inmunología , Monocitos/virología , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/fisiología , Citocinas/metabolismo , Células Hep G2 , Hepatitis B/inmunología , Hepatitis B/virología , Replicación Viral , Interferón gamma/metabolismo , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Hepatocitos/virología , Hepatocitos/inmunología
18.
Front Immunol ; 15: 1340619, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711498

RESUMEN

To design new CARs targeting hepatitis B virus (HBV), we isolated human monoclonal antibodies recognizing the HBV envelope proteins from single B cells of a patient with a resolved infection. HBV-specific memory B cells were isolated by incubating peripheral blood mononuclear cells with biotinylated hepatitis B surface antigen (HBsAg), followed by single-cell flow cytometry-based sorting of live, CD19+ IgG+ HBsAg+ cells. Amplification and sequencing of immunoglobulin genes from single memory B cells identified variable heavy and light chain sequences. Corresponding immunoglobulin chains were cloned into IgG1 expression vectors and expressed in mammalian cells. Two antibodies named 4D06 and 4D08 were found to be highly specific for HBsAg, recognized a conformational and a linear epitope, respectively, and showed broad reactivity and neutralization capacity against all major HBV genotypes. 4D06 and 4D08 variable chain fragments were cloned into a 2nd generation CAR format with CD28 and CD3zeta intracellular signaling domains. The new CAR constructs displayed a high functional avidity when expressed on primary human T cells. CAR-grafted T cells proved to be polyfunctional regarding cytokine secretion and killed HBV-positive target cells. Interestingly, background activation of the 4D08-CAR recognizing a linear instead of a conformational epitope was consistently low. In a preclinical model of chronic HBV infection, murine T cells grafted with the 4D06 and the 4D08 CAR showed on target activity indicated by a transient increase in serum transaminases, and a lower number of HBV-positive hepatocytes in the mice treated. This study demonstrates an efficient and fast approach to identifying pathogen-specific monoclonal human antibodies from small donor cell numbers for the subsequent generation of new CARs.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Virus de la Hepatitis B , Humanos , Virus de la Hepatitis B/inmunología , Virus de la Hepatitis B/genética , Animales , Ratones , Antígenos de Superficie de la Hepatitis B/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Anticuerpos Monoclonales/inmunología , Inmunoterapia Adoptiva , Hepatitis B/inmunología , Hepatitis B/virología , Anticuerpos ampliamente neutralizantes/inmunología , Linfocitos B/inmunología , Linfocitos T/inmunología
19.
J Gen Virol ; 105(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38757942

RESUMEN

Since its discovery in 1965, our understanding of the hepatitis B virus (HBV) replication cycle and host immune responses has increased markedly. In contrast, our knowledge of the molecular biology of hepatitis delta virus (HDV), which is associated with more severe liver disease, is less well understood. Despite the progress made, critical gaps remain in our knowledge of HBV and HDV replication and the mechanisms underlying viral persistence and evasion of host immunity. The International HBV Meeting is the leading annual scientific meeting for presenting the latest advances in HBV and HDV molecular virology, immunology, and epidemiology. In 2023, the annual scientific meeting was held in Kobe, Japan and this review summarises some of the advances presented at the Meeting and lists gaps in our knowledge that may facilitate the development of new therapies.


Asunto(s)
Virus de la Hepatitis B , Hepatitis B , Virus de la Hepatitis Delta , Replicación Viral , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/fisiología , Virus de la Hepatitis B/inmunología , Humanos , Virus de la Hepatitis Delta/genética , Virus de la Hepatitis Delta/fisiología , Hepatitis B/virología , Hepatitis B/inmunología , Biología Molecular , Japón , Hepatitis D/virología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/genética
20.
Viruses ; 16(4)2024 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-38675889

RESUMEN

Remdesivir (RDV) is a broad-spectrum nucleotide analog prodrug approved for the treatment of COVID-19 in hospitalized and non-hospitalized patients with clinical benefit demonstrated in multiple Phase 3 trials. Here we present SARS-CoV-2 resistance analyses from the Phase 3 SIMPLE clinical studies evaluating RDV in hospitalized participants with severe or moderate COVID-19 disease. The severe and moderate studies enrolled participants with radiologic evidence of pneumonia and a room-air oxygen saturation of ≤94% or >94%, respectively. Virology sample collection was optional in the study protocols. Sequencing and related viral load data were obtained retrospectively from participants at a subset of study sites with local sequencing capabilities (10 of 183 sites) at timepoints with detectable viral load. Among participants with both baseline and post-baseline sequencing data treated with RDV, emergent Nsp12 substitutions were observed in 4 of 19 (21%) participants in the severe study and none of the 2 participants in the moderate study. The following 5 substitutions emerged: T76I, A526V, A554V, E665K, and C697F. The substitutions T76I, A526V, A554V, and C697F had an EC50 fold change of ≤1.5 relative to the wildtype reference using a SARS-CoV-2 subgenomic replicon system, indicating no significant change in the susceptibility to RDV. The phenotyping of E665K could not be determined due to a lack of replication. These data reveal no evidence of relevant resistance emergence and further confirm the established efficacy profile of RDV with a high resistance barrier in COVID-19 patients.


Asunto(s)
Adenosina Monofosfato , Adenosina Monofosfato/análogos & derivados , Alanina , Alanina/análogos & derivados , Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Farmacorresistencia Viral , SARS-CoV-2 , Carga Viral , Humanos , Alanina/uso terapéutico , Alanina/farmacología , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Antivirales/farmacología , Antivirales/uso terapéutico , Carga Viral/efectos de los fármacos , COVID-19/virología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA