Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2402890121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771868

RESUMEN

Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.


Asunto(s)
Distroglicanos , Miocardio , Animales , Ratones , Miocardio/metabolismo , Miocardio/patología , Glicosilación , Distroglicanos/metabolismo , Matriz Extracelular/metabolismo , Ratones Noqueados
2.
bioRxiv ; 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38187633

RESUMEN

Matriglycan (-1,3-ß-glucuronic acid-1,3-α-xylose-) is a polysaccharide that is synthesized on α-dystroglycan, where it functions as a high-affinity glycan receptor for extracellular proteins, such as laminin, perlecan and agrin, thus anchoring the plasma membrane to the extracellular matrix. This biological activity is closely associated with the size of matriglycan. Using high-resolution mass spectrometry and site-specific mutant mice, we show for the first time that matriglycan on the T317/T319 and T379 sites of α-dystroglycan are not identical. T379-linked matriglycan is shorter than the previously characterized T317/T319-linked matriglycan, although it maintains its laminin binding capacity. Transgenic mice with only the shorter T379-linked matriglycan exhibited mild embryonic lethality, but those that survived were healthy. The shorter T379-linked matriglycan exists in multiple tissues and maintains neuromuscular function in adult mice. In addition, the genetic transfer of α-dystroglycan carrying just the short matriglycan restored grip strength and protected skeletal muscle from eccentric contraction-induced damage in muscle-specific dystroglycan knock-out mice. Due to the effects that matriglycan imparts on the extracellular proteome and its ability to modulate cell-matrix interactions, our work suggests that differential regulation of matriglycan length in various tissues optimizes the extracellular environment for unique cell types.

3.
Neuromuscul Disord ; 31(11): 1169-1178, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34654610

RESUMEN

Alpha-dystroglycan (αDG) is a highly glycosylated cell surface protein with a significant role in cell-to-extracellular matrix interactions in muscle. αDG interaction with extracellular ligands relies on the activity of the LARGE1 glycosyltransferase that synthesizes and extends the heteropolysaccharide matriglycan. Abnormalities in αDG glycosylation and formation of matriglycan are the pathogenic mechanisms for the dystroglycanopathies, a group of congenital muscular dystrophies. Muscle biopsies were evaluated from related 6-week-old Labrador retriever puppies with poor suckling, small stature compared to normal litter mates, bow-legged stance and markedly elevated creatine kinase activities. A dystrophic phenotype with marked degeneration and regeneration, multifocal mononuclear cell infiltration and endomysial fibrosis was identified on muscle cryosections. Single nucleotide polymorphism (SNP) array genotyping data on the family members identified three regions of homozygosity in 4 cases relative to 8 controls. Analysis of whole genome sequence data from one of the cases identified a stop codon mutation in the LARGE1 gene that truncates 40% of the protein. Immunofluorescent staining and western blotting demonstrated the absence of matriglycan in skeletal muscle and heart from affected dogs. Compared to control, LARGE enzyme activity was not detected. This is the first report of a dystroglycanopathy in dogs.


Asunto(s)
Enfermedades de los Perros/genética , Distrofia Muscular Animal/genética , Animales , Perros , Distroglicanos/metabolismo , Glicosilación , Músculo Esquelético/patología , Mutación , Fenotipo
4.
Science ; 302(5649): 1416-8, 2003 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-14631046

RESUMEN

Calcium ion (Ca2+) influx through voltage-gated Ca2+ channels is important for the regulation of vascular tone. Activation of L-type Ca2+ channels initiates muscle contraction; however, the role of T-type Ca2+ channels (T-channels) is not clear. We show that mice deficient in the alpha1H T-type Ca2+ channel (alpha(1)3.2-null) have constitutively constricted coronary arterioles and focal myocardial fibrosis. Coronary arteries isolated from alpha(1)3.2-null arteries showed normal contractile responses, but reduced relaxation in response to acetylcholine and nitroprusside. Furthermore, acute blockade of T-channels with Ni2+ prevented relaxation of wild-type coronary arteries. Thus, Ca2+ influx through alpha1H T-type Ca2+ channels is essential for normal relaxation of coronary arteries.


Asunto(s)
Arterias/fisiología , Canales de Calcio Tipo T/fisiología , Calcio/metabolismo , Vasos Coronarios/fisiología , Vasodilatación , Acetilcolina/farmacología , Animales , Arterias/efectos de los fármacos , Canales de Calcio Tipo T/genética , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Ecocardiografía , Electrocardiografía , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Femenino , Fibrosis , Ganglios Espinales/citología , Marcación de Gen , Corazón/fisiología , Frecuencia Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/fisiología , Miocardio/patología , Neuronas/metabolismo , Níquel/farmacología , Óxido Nítrico/fisiología , Donantes de Óxido Nítrico/farmacología , Nitroprusiato/farmacología , Técnicas de Placa-Clamp , Vasoconstricción/efectos de los fármacos , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA