Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175554

RESUMEN

Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.


Asunto(s)
Adenosina Trifosfato , Chaperonina 60 , Chaperonina 60/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 10/química , Pliegue de Proteína
2.
Biochim Biophys Acta Proteins Proteom ; 1870(6): 140793, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35618206

RESUMEN

The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Although missing part of the Cbl binding domain, p.R132X is associated to late-onset symptoms and, therefore, it is supposed to retain residual function. However, to our knowledge structural-functional studies on c.394C > T mutant aimed at verifying this hypothesis are still lacking. By using a biophysical approach including Circular Dichroism, fluorescence, Small Angle X-ray Scattering, and Molecular Dynamics, we show that the mutant protein MMACHC-R132X retains secondary structure elements and remains compact in solution, partly preserving its binding affinity for Cbl. Insights on the fragile stability of MMACHC-R132X-Cbl are provided.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Homocistinuria , Errores Innatos del Metabolismo de los Aminoácidos/genética , Proteínas Portadoras , Niño , Homocistinuria/diagnóstico , Homocistinuria/tratamiento farmacológico , Homocistinuria/genética , Humanos , Mutación , Oxidorreductasas/metabolismo , Vitamina B 12/metabolismo
3.
J Biol Chem ; 294(34): 12826-12835, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31292195

RESUMEN

During their lifecycle, many marine organisms rely on natural adhesives to attach to wet surfaces for movement and self-defense in aqueous tidal environments. Adhesive proteins from mussels are biocompatible and elicit only minimal immune responses in humans. Therefore these proteins have received increased attention for their potential applications in medicine, biomaterials, and biotechnology. The Asian green mussel Perna viridis secretes several byssal plaque proteins, molecules that help anchoring the mussel to surfaces. Among these proteins, protein-5ß (Pvfp-5ß) initiates interactions with the substrate, displacing interfacial water molecules before binding to the surface. Here, we established the first recombinant expression in Escherichia coli of Pvfp-5ß. We characterized recombinant Pvfp-5ß, finding that despite displaying a CD spectrum consistent with features of a random coil, the protein is correctly folded as indicated by MS and NMR analyses. Pvfp-5ß folds as a ß-sheet-rich protein as expected for an epidermal growth factor-like module. We examined the effects of Pvfp-5ß on cell viability and adhesion capacity in NIH-3T3 and HeLa cell lines, revealing that Pvfp-5ß has no cytotoxic effects at the protein concentrations used and provides good cell-adhesion strength on both glass and plastic plates. Our findings suggest that the adhesive properties of recombinant Pvfp-5ß make it an efficient surface-coating material, potentially suitable for biomedical applications including regeneration of damaged tissues.


Asunto(s)
Proteínas/química , Adhesivos Tisulares , Animales , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Perna , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Propiedades de Superficie , Ingeniería de Tejidos
4.
Multidiscip Respir Med ; 10: 35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26629342

RESUMEN

BACKGROUND: Weaning from tracheostomy has implications in management, quality of life, and costs of ventilated patients. Furthermore, endotracheal cannula removing needs further studies. Aim of this study was the validation of a protocol for weaning from tracheostomy and evaluation of predictor factors of decannulation. METHODS: Medical records of 48 patients were retrospectively evaluated. Patients were decannulated in agreement with a decannulation protocol based on the evaluation of clinical stability, expiratory muscle strength, presence of tracheal stenosis/granulomas, deglutition function, partial pressure of CO2, and PaO2/FiO2 ratio. These variables, together with underlying disease, blood gas analysis parameters, time elapsed with cannula, comordibity, Barthel index, and the condition of ventilation, were evaluated in a logistic model as predictors of decannulation. RESULTS: 63 % of patients were successfully decannulated in agreement with our protocol and no one needed to be re-cannulated. Three variables were significantly associated with the decannulation: no pulmonary underlying diseases (OR = 7.12; 95 % CI 1.2-42.2), no mechanical ventilation (OR = 9.55; 95 % CI 2.1-44.2) and period of tracheostomy ≤10 weeks (OR = 6.5; 95 % CI 1.6-27.5). CONCLUSIONS: The positive course of decannulated patients supports the suitability of the weaning protocol we propose here. The strong predictive role of three clinical variables gives premise for new studies testing simpler decannulation protocols.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA