Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
bioRxiv ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38979324

RESUMEN

The prevailing view on post-translational modifications (PTMs) is that amino acid side chains in proteins are modified with a single PTM at any given time. However, a growing body of work has demonstrated crosstalk between different PTMs, some occurring on the same residue. Such interplay is seen with ADP-ribosylation and ubiquitylation, where specialized E3 ligases ubiquitylate targets for proteasomal degradation in an ADP-ribosylation-dependent manner. More recently, the DELTEX family of E3 ligases was reported to catalyze ubiquitylation of the 3'- hydroxy group of the adenine-proximal ribose of free NAD + and ADP-ribose in vitro , generating a non-canonical ubiquitin ester-linked species. In this report, we show, for the first time, that this dual PTM occurs in cells on mono-ADP-ribosylated (MARylated) PARP10 on Glu/Asp sites to form a MAR ubiquitin ester (MARUbe). We term this process m ono- A DP-ribosyl ub iquit ylation or MARUbylation. Using chemical and enzymatic treatments, including a newly characterized bacterial deubiquitinase with esterase-specific activity, we discovered that PARP10 MARUbylation is extended with K11-linked polyubiquitin chains. Finally, mechanistic studies using proteasomal and ubiquitin-activating enzyme inhibitors demonstrated that PARP10 MARUbylation leads to its proteasomal degradation, providing a functional role for this new PTM in regulating protein turnover.

2.
Cell Host Microbe ; 32(6): 913-924.e7, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38870903

RESUMEN

Aspects of how Burkholderia escape the host's intrinsic immune response to replicate in the cell cytosol remain enigmatic. Here, we show that Burkholderia has evolved two mechanisms to block the activity of Ring finger protein 213 (RNF213)-mediated non-canonical ubiquitylation of bacterial lipopolysaccharide (LPS), thereby preventing the initiation of antibacterial autophagy. First, Burkholderia's polysaccharide capsule blocks RNF213 association with bacteria and second, the Burkholderia deubiquitylase (DUB), TssM, directly reverses the activity of RNF213 through a previously unrecognized esterase activity. Structural analysis provides insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from its isopeptidase function. Furthermore, a putative TssM homolog also displays esterase activity and removes ubiquitin from LPS, establishing this as a virulence mechanism. Of note, we also find that additional immune-evasion mechanisms exist, revealing that overcoming this arm of the host's immune response is critical to the pathogen.


Asunto(s)
Proteínas Bacterianas , Burkholderia , Lipopolisacáridos , Ubiquitinación , Lipopolisacáridos/metabolismo , Humanos , Burkholderia/inmunología , Proteínas Bacterianas/metabolismo , Esterasas/metabolismo , Evasión Inmune , Ubiquitina-Proteína Ligasas/metabolismo , Interacciones Huésped-Patógeno/inmunología , Autofagia , Virulencia
3.
Elife ; 122024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358795

RESUMEN

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here, we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.


Asunto(s)
Acetilesterasa , Membranas Mitocondriales , Chlamydia trachomatis , Proteínas Bacterianas/genética , Ubiquitina
4.
bioRxiv ; 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38260548

RESUMEN

The immune checkpoint regulator CTLA4 is an unusually short-lived membrane protein. Here we show that its lysosomal degradation is dependent on ubiquitylation at Lysine residues 203 and 213. Inhibition of the v-ATPase partially restores CTLA4 levels following cycloheximide treatment, but also reveals a fraction that is secreted in exosomes. The endosomal deubiquitylase, USP8, interacts with CTLA4 and its loss enhances CTLA4 ubiquitylation in cancer cells, mouse CD4+ T cells and in cancer cell-derived exosomes. Depletion of the USP8 adapter protein, HD-PTP, but not ESCRT-0 recapitulates this cellular phenotype, but shows distinct properties vis-à-vis exosome incorporation. Re-expression of wild-type USP8, but neither a catalytically inactive, nor a localization-compromised ΔMIT domain mutant can rescue delayed degradation of CTLA4, or counteract its accumulation in clustered endosomes. UbiCRest analysis of CTLA4-associated ubiquitin chain linkages identifies a complex mixture of conventional Lys63- and more unusual Lys27- and Lys29-linked polyubiquitin chains that may underly the rapidity of protein turnover.

5.
Mol Cell ; 83(24): 4538-4554.e4, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38091999

RESUMEN

Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.


Asunto(s)
Poliubiquitina , Ubiquitina-Proteína Ligasas , Humanos , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
6.
Elife ; 122023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38079206

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.


Although rare diseases only impact a small fraction of the population, they still affect hundreds of millions of people around the world. Many of these conditions are caused by variations in inherited genetic material, which nowadays can be readily detected using advanced sequencing technologies. However, establishing a connection between these genetic changes and the disease they cause often requires further in-depth study. One such rare inherited disorder is developmental and epileptic encephalopathy type 44 (DEE44), which is caused by genetic variations within the gene for UBA5 (short for ubiquitin-like modifier activating enzyme 5). For DEE44 to occur, both copies of the gene for UBA5, known as alleles, must contain one or more detrimental variation. Although all these variations prevent UBA5 from working correctly, the level of disruption they cause, known as allelic strength, varies between them. However, it remained unclear whether the severity of the DEE44 disease directly corresponds with the allelic strength of these variants. To answer this question, Pan et al. tested how different genetic variants found in patients with DEE44 affected the behavior and health of fruit flies. These results were then compared against in vitro biochemical assays testing how alleles containing these variants impacted the function of UBA5. When the fly gene for the enzyme was replaced with the human gene containing variations associated with DEE44, flies exhibited changes in their survival rates, developmental progress, lifespan, and neurological well-being. However, not all of the variants caused ill effects. Using this information, the patient variants were classified into three categories based on the severity of their effect: mild, intermediate, and severe. Biochemical assays supported this classification and revealed that the variants that caused more severe symptoms tended to inhibit the activity of UBA5 more significantly. Pan et al. further analyzed the nature of the variants in the patients and showed that most patients typically carried one mild and one strong variant, although some individuals did have two intermediate variants. Notably, no patients carried two severe variants. This indicates that DEE44 is the result of UBA5 only partially losing its ability to work correctly. The study by Pan et al. provides a framework for assessing the impact of genetic variants associated with DEE44, aiding the diagnosis and treatment of the disorder. However, further research involving more patients, more detailed clinical data, and testing other newly identified DEE44-causing variants is needed to solidify the correlation between allelic strength and disease severity.


Asunto(s)
Encefalopatías , Discapacidad Intelectual , Trastornos del Movimiento , Enzimas Activadoras de Ubiquitina , Humanos , Encefalopatías/genética , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética
7.
EMBO J ; 42(18): e114318, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37555693

RESUMEN

Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.


Asunto(s)
Proteínas Bacterianas , Ubiquitina , Ubiquitina/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno , Bacterias/genética , Bacterias/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Eucariontes/metabolismo
8.
medRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37502976

RESUMEN

Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.

9.
Res Sq ; 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37503018

RESUMEN

Pathogenic bacteria have evolved diverse mechanisms to counteract cell-autonomous immunity, which otherwise guards both immune and non-immune cells from the onset of an infection1,2. The versatile immunity protein Ring finger protein 213 (RNF213)3-6 mediates the non-canonical ester-linked ubiquitylation of lipopolysaccharide (LPS), marking bacteria that sporadically enter the cytosol for destruction by antibacterial autophagy4. However, whether cytosol-adapted pathogens are ubiquitylated on their LPS and whether they escape RNF213-mediated immunity, remains unknown. Here we show that Burkholderia deubiquitylase (DUB), TssM7-9, is a potent esterase that directly reverses the ubiquitylation of LPS. Without TssM, cytosolic Burkholderia became coated in polyubiquitin and autophagy receptors in an RNF213-dependent fashion. Whereas the expression of TssM was sufficient to enable the replication of the non-cytosol adapted pathogen Salmonella, we demonstrate that Burkholderia has evolved a multi-layered defence system to proliferate in the host cell cytosol, including a block in antibacterial autophagy10-12. Structural analysis provided insight into the molecular basis of TssM esterase activity, allowing it to be uncoupled from isopeptidase function. TssM homologs conserved in another Gram-negative pathogen also reversed non-canonical LPS ubiquitylation, establishing esterase activity as a bacterial virulence mechanism to subvert host cell-autonomous immunity.

10.
Autophagy Rep ; 2(1)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325703

RESUMEN

Septins are cytoskeletal proteins implicated in numerous cellular processes including cytokinesis and morphogenesis. In the case of infection by Shigella flexneri, septins assemble into cage-like structures that entrap cytosolic bacteria targeted by autophagy. The interplay between septin cage entrapment and bacterial autophagy is poorly understood. We used a correlative light and cryo-soft X-ray tomography (cryo-SXT) pipeline to study septin cage entrapment of Shigella in its near-native state. Septin cages could be identified as X-ray dense structures, indicating they contain host cell proteins and lipids consistent with their autophagy links. Airyscan confocal microscopy of Shigella-septin cages showed that septins and lysine 63 (K63)-linked ubiquitin chains are present in separate bacterial microdomains, suggesting they are recruited separately. Finally, Cryo-SXT and live-cell imaging revealed an interaction between septins and microtubule-associated protein light chain 3B (LC3B)-positive membranes during autophagy of Shigella. Collectively our data present a new model for how septin-caged Shigella are targeted to autophagy.

11.
bioRxiv ; 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37333152

RESUMEN

HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.

12.
J Cell Sci ; 136(7)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36939083

RESUMEN

During host cell invasion, Shigella escapes to the cytosol and polymerizes actin for cell-to-cell spread. To restrict cell-to-cell spread, host cells employ cell-autonomous immune responses including antibacterial autophagy and septin cage entrapment. How septins interact with the autophagy process to target Shigella for destruction is poorly understood. Here, we employed a correlative light and cryo-soft X-ray tomography (cryo-SXT) pipeline to study Shigella septin cage entrapment in its near-native state. Quantitative cryo-SXT showed that Shigella fragments mitochondria and enabled visualization of X-ray-dense structures (∼30 nm resolution) surrounding Shigella entrapped in septin cages. Using Airyscan confocal microscopy, we observed lysine 63 (K63)-linked ubiquitin chains decorating septin-cage-entrapped Shigella. Remarkably, septins and K63 chains are present in separate bacterial microdomains, indicating they are recruited separately during antibacterial autophagy. Cryo-SXT and live-cell imaging revealed an interaction between septins and LC3B-positive membranes during autophagy of Shigella. Together, these findings demonstrate how septin-caged Shigella are targeted for autophagy and provide fundamental insights into autophagy-cytoskeleton interactions.


Asunto(s)
Septinas , Shigella , Septinas/metabolismo , Shigella/metabolismo , Citoesqueleto/metabolismo , Autofagia/fisiología , Ubiquitinas/metabolismo
13.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36909574

RESUMEN

Many cellular processes are regulated by ubiquitin-mediated proteasomal degradation. Pathogens can regulate eukaryotic proteolysis through the delivery of proteins with de-ubiquitinating (DUB) activities. The obligate intracellular pathogen Chlamydia trachomatis secretes Cdu1 (ChlaDUB1), a dual deubiquitinase and Lys-acetyltransferase, that promotes Golgi remodeling and survival of infected host cells presumably by regulating the ubiquitination of host and bacterial proteins. Here we determined that Cdu1's acetylase but not its DUB activity is important to protect Cdu1 from ubiquitin-mediated degradation. We further identified three C. trachomatis proteins on the pathogen-containing vacuole (InaC, IpaM, and CTL0480) that required Cdu1's acetylase activity for protection from degradation and determined that Cdu1 and these Cdu1-protected proteins are required for optimal egress of Chlamydia from host cells. These findings highlight a non-canonical mechanism of pathogen-mediated protection of virulence factors from degradation after their delivery into host cells and the coordinated regulation of secreted effector proteins.

14.
FEBS J ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36636866

RESUMEN

The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.

15.
Methods Mol Biol ; 2581: 3-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36413306

RESUMEN

Reconstitution of ubiquitin conjugation and deconjugation in vitro provides access to valuable information on enzyme kinetics, specificity, and structure-function relationships. Classically, these biochemical assays culminate in separation by SDS-PAGE and analysis by immunoblotting, an approach that requires additional time, can be difficult to quantify, and provides granular snapshots of the reaction progression. To address these limitations, we have implemented a fluorescence polarization-based assay that tracks ubiquitin conjugation and deconjugation in real time based upon changes in molecular weight. We find this approach, which we have termed "UbiReal," to greatly facilitate biochemical studies such as mutational analyses, specificity determination, and inhibitor characterization.


Asunto(s)
Ubiquitina , Ubiquitinación , Polarización de Fluorescencia , Ubiquitina/metabolismo , Electroforesis en Gel de Poliacrilamida
16.
Mol Cell ; 83(1): 105-120.e5, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36538933

RESUMEN

The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.


Asunto(s)
Legionella pneumophila , Ubiquitina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación , Poliubiquitina/genética , Poliubiquitina/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enzimas Desubicuitinizantes/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
17.
Mol Cell ; 81(13): 2690-2692, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214444

RESUMEN

As a component of cell-autonomous immunity, cytosolic bacterial invaders are earmarked with the protein modifier ubiquitin for targeted xenophagic destruction. Otten et al. (2021) reveal that unique bacterial lipids are unconventional sites for ubiquitination and initiate downstream pathogen clearance.


Asunto(s)
Bacterias , Ubiquitina , Bacterias/metabolismo , Lípidos , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
18.
FEBS J ; 288(20): 5903-5908, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34322999

RESUMEN

Ester-linked ubiquitination of serine or threonine residues - or even lipids - has emerged as a new regulatory earmark in cell signalling. Petrova et al. (2021) now reveal that ubiquitin esterification by the atypical ubiquitin ligase HOIL-1, a component of the LUBAC complex, is critical for proper formation of linear ubiquitin chains and control of immune signalling in T cells and macrophages. Surprisingly, ester-linked ubiquitination can either promote or inhibit linear ubiquitin conjugation and cytokine production depending on the receptor and immune cell engaged. Comment on: https://doi.org/10.1111/febs.15896.


Asunto(s)
Ésteres , Ubiquitina , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
EMBO J ; 39(15): e105127, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32567101

RESUMEN

Manipulation of host ubiquitin signaling is becoming an increasingly apparent evolutionary strategy among bacterial and viral pathogens. By removing host ubiquitin signals, for example, invading pathogens can inactivate immune response pathways and evade detection. The ovarian tumor (OTU) family of deubiquitinases regulates diverse ubiquitin signals in humans. Viral pathogens have also extensively co-opted the OTU fold to subvert host signaling, but the extent to which bacteria utilize the OTU fold was unknown. We have predicted and validated a set of OTU deubiquitinases encoded by several classes of pathogenic bacteria. Biochemical assays highlight the ubiquitin and polyubiquitin linkage specificities of these bacterial deubiquitinases. By determining the ubiquitin-bound structures of two examples, we demonstrate the novel strategies that have evolved to both thread an OTU fold and recognize a ubiquitin substrate. With these new examples, we perform the first cross-kingdom structural analysis of the OTU fold that highlights commonalities among distantly related OTU deubiquitinases.


Asunto(s)
Proteínas Bacterianas , Enzimas Desubicuitinizantes , Legionella/enzimología , Pliegue de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Legionella/genética , Poliubiquitina/química , Poliubiquitina/genética , Poliubiquitina/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA