Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
bioRxiv ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38645130

RESUMEN

The immunological defects causing susceptibility to severe viral respiratory infections due to early-life dysbiosis remain ill-defined. Here, we show that influenza virus susceptibility in dysbiotic infant mice is caused by CD8+ T cell hyporesponsiveness and diminished persistence as tissue-resident memory cells. We describe a previously unknown role for nuclear factor interleukin 3 (NFIL3) in repression of memory differentiation of CD8+ T cells in dysbiotic mice involving epigenetic regulation of T cell factor 1 (TCF 1) expression. Pulmonary CD8+ T cells from dysbiotic human infants share these transcriptional signatures and functional phenotypes. Mechanistically, intestinal inosine was reduced in dysbiotic human infants and newborn mice, and inosine replacement reversed epigenetic dysregulation of Tcf7 and increased memory differentiation and responsiveness of pulmonary CD8+ T cells. Our data unveils new developmental layers controlling immune cell activation and identifies microbial metabolites that may be used therapeutically in the future to protect at-risk newborns.

2.
Genes (Basel) ; 15(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38540357

RESUMEN

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Asunto(s)
Perfilación de la Expresión Génica , Pulmón , Animales , Humanos , Ratones , Pulmón/metabolismo , Mamíferos/genética , Pericitos , Fenotipo , Transcriptoma/genética , Recién Nacido
3.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L604-L617, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38442187

RESUMEN

Postnatal lung development results in an increasingly functional organ prepared for gas exchange and pathogenic challenges. It is achieved through cellular differentiation and migration. Changes in the tissue architecture during this development process are well-documented and increasing cellular diversity associated with it are reported in recent years. Despite recent progress, transcriptomic and molecular pathways associated with human postnatal lung development are yet to be fully understood. In this study, we investigated gene expression patterns associated with healthy pediatric lung development in four major enriched cell populations (epithelial, endothelial, and nonendothelial mesenchymal cells, along with lung leukocytes) from 1-day-old to 8-yr-old organ donors with no known lung disease. For analysis, we considered the donors in four age groups [less than 30 days old neonates, 30 days to < 1 yr old infants, toddlers (1 to < 2 yr), and children 2 yr and older] and assessed differentially expressed genes (DEG). We found increasing age-associated transcriptional changes in all four major cell types in pediatric lung. Transition from neonate to infant stage showed highest number of DEG compared with the number of DEG found during infant to toddler- or toddler to older children-transitions. Profiles of differential gene expression and further pathway enrichment analyses indicate functional epithelial cell maturation and increased capability of antigen presentation and chemokine-mediated communication. Our study provides a comprehensive reference of gene expression patterns during healthy pediatric lung development that will be useful in identifying and understanding aberrant gene expression patterns associated with early life respiratory diseases.NEW & NOTEWORTHY This study presents postnatal transcriptomic changes in major cell populations in human lung, namely endothelial, epithelial, mesenchymal cells, and leukocytes. Although human postnatal lung development continues through early adulthood, our results demonstrate that greatest transcriptional changes occur in first few months of life during neonate to infant transition. These early transcriptional changes in lung parenchyma are particularly notable for functional maturation and activation of alveolar type II cell genes.


Asunto(s)
Pulmón , Transcriptoma , Humanos , Pulmón/crecimiento & desarrollo , Pulmón/metabolismo , Recién Nacido , Lactante , Niño , Preescolar , Masculino , Femenino , Análisis de Secuencia de ARN/métodos , Células Epiteliales/metabolismo , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
4.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L135-L148, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38084407

RESUMEN

Bronchiolitis obliterans (BO) is a fibrotic lung disease characterized by progressive luminal narrowing and obliteration of the small airways. In the nontransplant population, inhalation exposure to certain chemicals is associated with BO; however, the mechanisms contributing to disease induction remain poorly understood. This study's objective was to use single-cell RNA sequencing for the identification of transcriptomic signatures common to primary human airway epithelial cells after chemical exposure to BO-associated chemicals-diacetyl or nitrogen mustard-to help explain BO induction. Primary airway epithelial cells were cultured at air-liquid interface and exposed to diacetyl, nitrogen mustard, or control vapors. Cultures were dissociated and sequenced for single-cell RNA. Differential gene expression and functional pathway analyses were compared across exposures. In total, 75,663 single cells were captured and sequenced from all exposure conditions. Unbiased clustering identified 11 discrete phenotypes, including 5 basal, 2 ciliated, and 2 secretory cell clusters. With chemical exposure, the proportion of cells assigned to keratin 5+ basal cells decreased, whereas the proportion of cells aligned to secretory cell clusters increased compared with control exposures. Functional pathway analysis identified interferon signaling and antigen processing/presentation as pathways commonly upregulated after diacetyl or nitrogen mustard exposure in a ciliated cell cluster. Conversely, the response of airway basal cells differed significantly with upregulation of the unfolded protein response in diacetyl-exposed basal cells, not seen in nitrogen mustard-exposed cultures. These new insights provide early identification of airway epithelial signatures common to BO-associated chemical exposures.NEW & NOTEWORTHY Bronchiolitis obliterans (BO) is a devastating fibrotic lung disease of the small airways, or bronchioles. This original manuscript uses single-cell RNA sequencing for identifying common signatures of chemically exposed airway epithelial cells in BO induction. Chemical exposure reduced the proportion of keratin 5+ basal cells while increasing the proportion of keratin 4+ suprabasal cells. Functional pathways contributory to these shifts differed significantly across exposures. These new results highlight similarities and differences in BO induction across exposures.


Asunto(s)
Bronquiolitis Obliterante , Diacetil , Humanos , Queratina-5/metabolismo , Diacetil/metabolismo , Mecloretamina/metabolismo , Mucosa Respiratoria/metabolismo , Bronquiolitis Obliterante/inducido químicamente , Bronquiolitis Obliterante/metabolismo , Células Epiteliales/metabolismo
5.
Inflamm Regen ; 43(1): 52, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37876024

RESUMEN

Preterm infants with oxygen supplementation are at high risk for bronchopulmonary dysplasia (BPD), a neonatal chronic lung disease. Inflammation with macrophage activation is central to the pathogenesis of BPD. CXCL10, a chemotactic and pro-inflammatory chemokine, is elevated in the lungs of infants evolving BPD and in hyperoxia-based BPD in mice. Here, we tested if CXCL10 deficiency preserves lung growth after neonatal hyperoxia by preventing macrophage activation. To this end, we exposed Cxcl10 knockout (Cxcl10-/-) and wild-type mice to an experimental model of hyperoxia (85% O2)-induced neonatal lung injury and subsequent regeneration. In addition, cultured primary human macrophages and murine macrophages (J744A.1) were treated with CXCL10 and/or CXCR3 antagonist. Our transcriptomic analysis identified CXCL10 as a central hub in the inflammatory network of neonatal mouse lungs after hyperoxia. Quantitative histomorphometric analysis revealed that Cxcl10-/- mice are in part protected from reduced alveolar. These findings were related to the preserved spatial distribution of elastic fibers, reduced collagen deposition, and protection from macrophage recruitment/infiltration to the lungs in Cxcl10-/- mice during acute injury and regeneration. Complimentary, studies with cultured human and murine macrophages showed that hyperoxia induces Cxcl10 expression that in turn triggers M1-like activation and migration of macrophages through CXCR3. Finally, we demonstrated a temporal increase of macrophage-related CXCL10 in the lungs of infants with BPD. In conclusion, our data demonstrate macrophage-derived CXCL10 in experimental and clinical BPD that drives macrophage chemotaxis through CXCR3, causing pro-fibrotic lung remodeling and arrest of alveolarization. Thus, targeting the CXCL10-CXCR3 axis could offer a new therapeutic avenue for BPD.

6.
Nat Commun ; 14(1): 4566, 2023 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516747

RESUMEN

Accurate cell type identification is a key and rate-limiting step in single-cell data analysis. Single-cell references with comprehensive cell types, reproducible and functionally validated cell identities, and common nomenclatures are much needed by the research community for automated cell type annotation, data integration, and data sharing. Here, we develop a computational pipeline utilizing the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples to construct LungMAP single-cell reference (CellRef) for both normal human and mouse lungs. CellRefs define 48 human and 40 mouse lung cell types catalogued from diverse anatomic locations and developmental time points. We demonstrate the accuracy and stability of LungMAP CellRefs and their utility for automated cell type annotation of both normal and diseased lungs using multiple independent methods and testing data. We develop user-friendly web interfaces for easy access and maximal utilization of the LungMAP CellRefs.


Asunto(s)
Perfilación de la Expresión Génica , Difusión de la Información , Animales , Ratones , Humanos , Análisis de la Célula Individual , Transcriptoma
7.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L419-L433, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37489262

RESUMEN

Bronchopulmonary dysplasia (BPD) is a disease of prematurity related to the arrest of normal lung development. The objective of this study was to better understand how proteome modulation and cell-type shifts are noted in BPD pathology. Pediatric human donors aged 1-3 yr were classified based on history of prematurity and histopathology consistent with "healed" BPD (hBPD, n = 3) and "established" BPD (eBPD, n = 3) compared with respective full-term born (n = 6) age-matched term controls. Proteins were quantified by tandem mass spectroscopy with selected Western blot validations. Multiplexed immunofluorescence (MxIF) microscopy was performed on lung sections to enumerate cell types. Protein abundances and MxIF cell frequencies were compared among groups using ANOVA. Cell type and ontology enrichment were performed using an in-house tool and/or EnrichR. Proteomics detected 5,746 unique proteins, 186 upregulated and 534 downregulated, in eBPD versus control with fewer proteins differentially abundant in hBPD as compared with age-matched term controls. Cell-type enrichment suggested a loss of alveolar type I, alveolar type II, endothelial/capillary, and lymphatics, and an increase in smooth muscle and fibroblasts consistent with MxIF. Histochemistry and Western analysis also supported predictions of upregulated ferroptosis in eBPD versus control. Finally, several extracellular matrix components mapping to angiogenesis signaling pathways were altered in eBPD. Despite clear parsing by protein abundance, comparative MxIF analysis confirms phenotypic variability in BPD. This work provides the first demonstration of tandem mass spectrometry and multiplexed molecular analysis of human lung tissue for critical elucidation of BPD trajectory-defining factors into early childhood.NEW & NOTEWORTHY We provide new insights into the natural history of bronchopulmonary dysplasia in donor human lungs after the neonatal intensive care unit hospitalization. This study provides new insights into how the proteome and histopathology of BPD changes in early childhood, uncovering novel pathways for future study.


Asunto(s)
Displasia Broncopulmonar , Preescolar , Recién Nacido , Humanos , Niño , Displasia Broncopulmonar/patología , Inmunohistoquímica , Proteoma , Proteómica , Pulmón/metabolismo
8.
Nat Methods ; 20(8): 1174-1178, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468619

RESUMEN

Multiplexed antibody-based imaging enables the detailed characterization of molecular and cellular organization in tissues. Advances in the field now allow high-parameter data collection (>60 targets); however, considerable expertise and capital are needed to construct the antibody panels employed by these methods. Organ mapping antibody panels are community-validated resources that save time and money, increase reproducibility, accelerate discovery and support the construction of a Human Reference Atlas.


Asunto(s)
Anticuerpos , Recursos Comunitarios , Humanos , Reproducibilidad de los Resultados , Diagnóstico por Imagen
9.
iScience ; 26(3): 106097, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36879800

RESUMEN

At birth, the lung is still immature, heightening susceptibility to injury but enhancing regenerative capacity. Angiogenesis drives postnatal lung development. Therefore, we profiled the transcriptional ontogeny and sensitivity to injury of pulmonary endothelial cells (EC) during early postnatal life. Although subtype speciation was evident at birth, immature lung EC exhibited transcriptomes distinct from mature counterparts, which progressed dynamically over time. Gradual, temporal changes in aerocyte capillary EC (CAP2) contrasted with more marked alterations in general capillary EC (CAP1) phenotype, including distinct CAP1 present only in the early alveolar lung expressing Peg3, a paternally imprinted transcription factor. Hyperoxia, an injury that impairs angiogenesis induced both common and unique endothelial gene signatures, dysregulated capillary EC crosstalk, and suppressed CAP1 proliferation while stimulating venous EC proliferation. These data highlight the diversity, transcriptomic evolution, and pleiotropic responses to injury of immature lung EC, possessing broad implications for lung development and injury across the lifespan.

10.
PLoS One ; 18(2): e0281898, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36827401

RESUMEN

Coronavirus disease (COVID-19) is an infectious disease caused by the SARS coronavirus 2 (SARS-CoV-2) virus. Direct assessment, detection, and quantitative analysis using high throughput methods like single-cell RNA sequencing (scRNAseq) is imperative to understanding the host response to SARS-CoV-2. One barrier to studying SARS-CoV-2 in the laboratory setting is the requirement to process virus-infected cell cultures, and potentially infectious materials derived therefrom, under Biosafety Level 3 (BSL-3) containment. However, there are only 190 BSL3 laboratory facilities registered with the U.S. Federal Select Agent Program, as of 2020, and only a subset of these are outfitted with the equipment needed to perform high-throughput molecular assays. Here, we describe a method for preparing non-hazardous RNA samples from SARS-CoV-2 infected cells, that enables scRNAseq analyses to be conducted safely in a BSL2 facility-thereby making molecular assays of SARS-CoV-2 cells accessible to a much larger community of researchers. Briefly, we infected African green monkey kidney epithelial cells (Vero-E6) with SARS-CoV-2 for 96 hours, trypsin-dissociated the cells, and inactivated them with methanol-acetone in a single-cell suspension. Fixed cells were tested for the presence of infectious SARS-CoV-2 virions using the Tissue Culture Infectious Dose Assay (TCID50), and also tested for viability using flow cytometry. We then tested the dissociation and methanol-acetone inactivation method on primary human lung epithelial cells that had been differentiated on an air-liquid interface. Finally, we performed scRNAseq quality control analysis on the resulting cell populations to evaluate the effects of our virus inactivation and sample preparation protocol on the quality of the cDNA produced. We found that methanol-acetone inactivated SARS-CoV-2, fixed the lung epithelial cells, and could be used to obtain noninfectious, high-quality cDNA libraries. This methodology makes investigating SARS-CoV-2, and related high-containment RNA viruses at a single-cell level more accessible to an expanded community of researchers.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Chlorocebus aethiops , Metanol , Acetona , Análisis de Expresión Génica de una Sola Célula , Células Epiteliales
11.
Front Mol Biosci ; 9: 1022775, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465564

RESUMEN

Human disease states are biomolecularly multifaceted and can span across phenotypic states, therefore it is important to understand diseases on all levels, across cell types, and within and across microanatomical tissue compartments. To obtain an accurate and representative view of the molecular landscape within human lungs, this fragile tissue must be inflated and embedded to maintain spatial fidelity of the location of molecules and minimize molecular degradation for molecular imaging experiments. Here, we evaluated agarose inflation and carboxymethyl cellulose embedding media and determined effective tissue preparation protocols for performing bulk and spatial mass spectrometry-based omics measurements. Mass spectrometry imaging methods were optimized to boost the number of annotatable molecules in agarose inflated lung samples. This optimized protocol permitted the observation of unique lipid distributions within several airway regions in the lung tissue block. Laser capture microdissection of these airway regions followed by high-resolution proteomic analysis allowed us to begin linking the lipidome with the proteome in a spatially resolved manner, where we observed proteins with high abundance specifically localized to the airway regions. We also compared our mass spectrometry results to lung tissue samples preserved using two other inflation/embedding media, but we identified several pitfalls with the sample preparation steps using this preservation method. Overall, we demonstrated the versatility of the inflation method, and we can start to reveal how the metabolome, lipidome, and proteome are connected spatially in human lungs and across disease states through a variety of different experiments.

12.
Artículo en Inglés | MEDLINE | ID: mdl-36413377

RESUMEN

An improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging, and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a new gateway portal. This portal connects a broad spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development, and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease, and drug treatment. These atlases are provided as independent and integrated queryable datasets, with an emphasis on dynamic visualization, figure generation, re-analysis, cell-type curation, and automated reference-based classification of user-provided single-cell genomics datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, supported data types, data portals and datasets from LungMAP and external research efforts.

13.
Cell Stem Cell ; 29(5): 840-855.e7, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35395180

RESUMEN

Hypoplastic left heart syndrome (HLHS) is a severe congenital heart disease with 30% mortality from heart failure (HF) in the first year of life, but the cause of early HF remains unknown. Induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CM) from patients with HLHS showed that early HF is associated with increased apoptosis, mitochondrial respiration defects, and redox stress from abnormal mitochondrial permeability transition pore (mPTP) opening and failed antioxidant response. In contrast, iPSC-CM from patients without early HF showed normal respiration with elevated antioxidant response. Single-cell transcriptomics confirmed that early HF is associated with mitochondrial dysfunction accompanied with endoplasmic reticulum (ER) stress. These findings indicate that uncompensated oxidative stress underlies early HF in HLHS. Importantly, mitochondrial respiration defects, oxidative stress, and apoptosis were rescued by treatment with sildenafil to inhibit mPTP opening or TUDCA to suppress ER stress. Together these findings point to the potential use of patient iPSC-CM for modeling clinical heart failure and the development of therapeutics.


Asunto(s)
Cardiopatías Congénitas , Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Antioxidantes/metabolismo , Cardiopatías Congénitas/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Estrés Oxidativo
14.
iScience ; 25(4): 104007, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35310935

RESUMEN

Neonatal immune-microbiota co-development is poorly understood, yet age-appropriate recognition of - and response to - pathogens and commensal microbiota is critical to health. In this longitudinal study of 148 preterm and 119 full-term infants from birth through one year of age, we found that postmenstrual age or weeks from conception is a central factor influencing T cell and mucosal microbiota development. Numerous features of the T cell and microbiota functional development remain unexplained; however, by either age metric and are instead shaped by discrete perinatal and postnatal events. Most strikingly, we establish that prenatal antibiotics or infection disrupt the normal T cell population developmental trajectory, influencing subsequent respiratory microbial colonization and predicting respiratory morbidity. In this way, early exposures predict the postnatal immune-microbiota axis trajectory, placing infants at later risk for respiratory morbidity in early childhood.

15.
Dev Cell ; 57(7): 839-853.e6, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35303432

RESUMEN

Although increased neuropeptides are often detected in lungs that exhibit respiratory distress, whether they contribute to the condition is unknown. Here, we show in a mouse model of neuroendocrine cell hyperplasia of infancy, a pediatric disease with increased pulmonary neuroendocrine cells (PNECs), excess PNEC-derived neuropeptides are responsible for pulmonary manifestations including hypoxemia. In mouse postnatal lung, prolonged signaling from elevated neuropeptides such as calcitonin gene-related peptide (CGRP) activate receptors enriched on endothelial cells, leading to reduced cellular junction gene expression, increased endothelium permeability, excess lung fluid, and hypoxemia. Excess fluid and hypoxemia were effectively attenuated by either prevention of PNEC formation, inactivation of CGRP gene, endothelium-specific inactivation of CGRP receptor gene, or treatment with CGRP receptor antagonist. Neuropeptides were increased in human lung diseases with excess fluid such as acute respiratory distress syndrome. Our findings suggest that restricting neuropeptide function may limit fluid and improve gas exchange in these conditions.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Neuropéptidos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Endoteliales/metabolismo , Humanos , Hipoxia/metabolismo , Pulmón/metabolismo , Ratones , Neuropéptidos/metabolismo
16.
Am J Respir Cell Mol Biol ; 66(4): 402-414, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35045271

RESUMEN

Oxygen supplementation in preterm infants disrupts alveolar epithelial type 2 (AT2) cell proliferation through poorly understood mechanisms. Here, newborn mice are used to understand how hyperoxia stimulates an early aberrant wave of AT2 cell proliferation that occurs between Postnatal Days (PNDs) 0 and 4. RNA-sequencing analysis of AT2 cells isolated from PND4 mice revealed hyperoxia stimulates expression of mitochondrial-specific methylenetetrahydrofolate dehydrogenase 2 and other genes involved in mitochondrial one-carbon coupled folate metabolism and serine synthesis. The same genes are induced when AT2 cells normally proliferate on PND7 and when they proliferate in response to the mitogen fibroblast growth factor 7. However, hyperoxia selectively stimulated their expression via the stress-responsive activating transcription factor 4 (ATF4). Administration of the mitochondrial superoxide scavenger mitoTEMPO during hyperoxia suppressed ATF4 and thus early AT2 cell proliferation, but it had no effect on normative AT2 cell proliferation seen on PND7. Because ATF4 and methylenetetrahydrofolate dehydrogenase are detected in hyperplastic AT2 cells of preterm infant humans and baboons with bronchopulmonary dysplasia, dampening mitochondrial oxidative stress and ATF4 activation may provide new opportunities for controlling excess AT2 cell proliferation in neonatal lung disease.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Hiperoxia , Factor de Transcripción Activador 4/genética , Animales , Animales Recién Nacidos , Proliferación Celular , Ácido Fólico/farmacología , Hiperoxia/metabolismo , Recien Nacido Prematuro , Ratones
17.
Hypertension ; 79(1): 79-92, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739767

RESUMEN

Clinical trials of Dll4 (Delta-like 4) neutralizing antibodies (Dll4nAbs) in cancer patients are ongoing. Surprisingly, pulmonary hypertension (PH) occurs in 14% to 18% of patients treated with Dll4nAbs, but the mechanisms have not been studied. Here, PH progression was measured in mice treated with Dll4nAbs. We detected Notch signaling in lung tissues and analyzed pulmonary vascular permeability and inflammation. Notch target gene array was performed on adult human pulmonary microvascular endothelial cells (ECs) after inhibiting Notch cleavage. Similar mechanisms were studied in PH mouse models and pulmonary arterial hypertension patients. The rescue effects of constitutively activated Notch1 in vivo were also measured. We observed that Dll4nAbs induced PH in mice as indicated by significantly increased right ventricular systolic pressure, as well as pulmonary vascular and right ventricular remodeling. Mechanistically, Dll4nAbs inhibited Notch1 cleavage and subsequently impaired lung endothelial barrier function and increased immune cell infiltration in vessel walls. In vitro, Notch targeted genes' expression related to cell growth and inflammation was decreased in human pulmonary microvascular ECs after the Notch1 inactivation. In lungs of PH mouse models and pulmonary arterial hypertension patients, Notch1 cleavage was inhibited. Consistently, EC cell-cell junction was leaky, and immune cell infiltration increased in PH mouse models. Overexpression activated Notch1-attenuated progression of PH in mice. In conclusion, Dll4nAbs led to PH development in mice by impaired EC barrier function and increased immune cell infiltration through inhibition of Notch1 cleavage in lung ECs. Reduced Notch1 cleavage in lung ECs could be an underlying mechanism of PH pathogenesis.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Receptor Notch1/metabolismo , Animales , Anticuerpos Neutralizantes/farmacología , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Masculino , Ratones , Arteria Pulmonar/metabolismo , Receptor Notch1/genética , Transducción de Señal/genética
18.
Eur Respir J ; 59(2)2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34446466

RESUMEN

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Animales , Animales Recién Nacidos , Displasia Broncopulmonar/patología , Modelos Animales de Enfermedad , Hiperoxia/patología , Interleucina-6/metabolismo , Pulmón , Macrófagos/metabolismo , Ratones
19.
Thorax ; 77(1): 47-57, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33883249

RESUMEN

INTRODUCTION: Neonatal lung injury as a consequence of hyperoxia (HO) therapy and ventilator care contribute to the development of bronchopulmonary dysplasia (BPD). Increased expression and activity of lysyl oxidase (LOX), a key enzyme that cross-links collagen, was associated with increased sphingosine kinase 1 (SPHK1) in human BPD. We, therefore, examined closely the link between LOX and SPHK1 in BPD. METHOD: The enzyme expression of SPHK1 and LOX were assessed in lung tissues of human BPD using immunohistochemistry and quantified (Halo). In vivo studies were based on Sphk1-/- and matched wild type (WT) neonatal mice exposed to HO while treated with PF543, an inhibitor of SPHK1. In vitro mechanistic studies used human lung microvascular endothelial cells (HLMVECs). RESULTS: Both SPHK1 and LOX expressions were increased in lungs of patients with BPD. Tracheal aspirates from patients with BPD had increased LOX, correlating with sphingosine-1-phosphate (S1P) levels. HO-induced increase of LOX in lungs were attenuated in both Sphk1-/- and PF543-treated WT mice, accompanied by reduced collagen staining (sirius red). PF543 reduced LOX activity in both bronchoalveolar lavage fluid and supernatant of HLMVECs following HO. In silico analysis revealed STAT3 as a potential transcriptional regulator of LOX. In HLMVECs, following HO, ChIP assay confirmed increased STAT3 binding to LOX promoter. SPHK1 inhibition reduced phosphorylation of STAT3. Antibody to S1P and siRNA against SPNS2, S1P receptor 1 (S1P1) and STAT3 reduced LOX expression. CONCLUSION: HO-induced SPHK1/S1P signalling axis plays a critical role in transcriptional regulation of LOX expression via SPNS2, S1P1 and STAT3 in lung endothelium.


Asunto(s)
Hiperoxia , Lesión Pulmonar , Animales , Células Endoteliales , Humanos , Ratones , Fosfotransferasas (Aceptor de Grupo Alcohol) , Proteína-Lisina 6-Oxidasa , Factor de Transcripción STAT3
20.
Dev Cell ; 57(1): 112-145.e2, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34936882

RESUMEN

The human lung plays vital roles in respiration, host defense, and basic physiology. Recent technological advancements such as single-cell RNA sequencing and genetic lineage tracing have revealed novel cell types and enriched functional properties of existing cell types in lung. The time has come to take a new census. Initiated by members of the NHLBI-funded LungMAP Consortium and aided by experts in the lung biology community, we synthesized current data into a comprehensive and practical cellular census of the lung. Identities of cell types in the normal lung are captured in individual cell cards with delineation of function, markers, developmental lineages, heterogeneity, regenerative potential, disease links, and key experimental tools. This publication will serve as the starting point of a live, up-to-date guide for lung research at https://www.lungmap.net/cell-cards/. We hope that Lung CellCards will promote the community-wide effort to establish, maintain, and restore respiratory health.


Asunto(s)
Pulmón/citología , Pulmón/fisiología , Diferenciación Celular/genética , Bases de Datos como Asunto , Humanos , Pulmón/metabolismo , Regeneración/genética , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA