RESUMEN
Non-human primates are extensively used in neuroscience research as models of the human brain, with the rhesus macaque being a prominent example. We have previously introduced a set of tractography protocols (XTRACT) for reconstructing 42 corresponding white matter (WM) bundles in the human and the macaque brain and have shown cross-species comparisons using such bundles as WM landmarks. Our original XTRACT protocols were developed using the F99 macaque brain template. However, additional macaque template brains are becoming increasingly common. Here, we generalise the XTRACT tractography protocol definitions across five macaque brain templates, including the F99, D99, INIA, Yerkes and NMT. We demonstrate equivalence of such protocols in two ways: (a) Firstly by comparing the bodies of the tracts derived using protocols defined across the different templates considered, (b) Secondly by comparing the projection patterns of the reconstructed tracts across the different templates in two cross-species (human-macaque) comparison tasks. The results confirm similarity of all predictions regardless of the macaque brain template used, providing direct evidence for the generalisability of these tractography protocols across the five considered templates.
Asunto(s)
Encéfalo , Imagen de Difusión Tensora , Sustancia Blanca , Animales , Imagen de Difusión Tensora/métodos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagen , Humanos , Macaca mulatta/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Masculino , Mapeo Encefálico/métodos , Femenino , Macaca , Vías Nerviosas/anatomía & histología , Vías Nerviosas/diagnóstico por imagen , Especificidad de la EspecieRESUMEN
Disruption in reciprocal connectivity between the right anterior insula and the left dorsolateral prefrontal cortex is associated with depression and may be a target for neuromodulation. In a five-center, parallel, double-blind, randomized controlled trial we personalized resting-state functional magnetic resonance imaging neuronavigated connectivity-guided intermittent theta burst stimulation (cgiTBS) at a site based on effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. We tested its efficacy in reducing the primary outcome depression symptoms measured by the GRID Hamilton Depression Rating Scale 17-item over 8, 16 and 26 weeks, compared with structural magnetic resonance imaging (MRI) neuronavigated repetitive transcranial magnetic stimulation (rTMS) delivered at the standard stimulation site (F3) in patients with 'treatment-resistant depression'. Participants were randomly assigned to 20 sessions over 4-6 weeks of either cgiTBS (n = 128) or rTMS (n = 127) with resting-state functional MRI at baseline and 16 weeks. Persistent decreases in depressive symptoms were seen over 26 weeks, with no differences between arms on the primary outcome GRID Hamilton Depression Rating Scale 17-item score (intention-to-treat adjusted mean, -0.31, 95% confidence interval (CI) -1.87, 1.24, P = 0.689). Two serious adverse events were possibly related to TMS (mania and psychosis). MRI-neuronavigated cgiTBS and rTMS were equally effective in patients with treatment-resistant depression over 26 weeks (trial registration no. ISRCTN19674644).
Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Estimulación Magnética Transcraneal , Humanos , Método Doble Ciego , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/diagnóstico por imagen , Estimulación Magnética Transcraneal/efectos adversos , Estimulación Magnética Transcraneal/métodos , Resultado del Tratamiento , Trastorno Depresivo Resistente al Tratamiento/terapiaRESUMEN
This study evaluated deep learning algorithms for semantic segmentation and quantification of intracerebral hemorrhage (ICH), perihematomal edema (PHE), and intraventricular hemorrhage (IVH) on noncontrast CT scans of patients with spontaneous ICH. Models were assessed on 1732 annotated baseline noncontrast CT scans obtained from the Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (ie, TICH-2) international multicenter trial (ISRCTN93732214), and different loss functions using a three-dimensional no-new-U-Net (nnU-Net) were examined to address class imbalance (30% of participants with IVH in dataset). On the test cohort (n = 174, 10% of dataset), the top-performing models achieved median Dice similarity coefficients of 0.92 (IQR, 0.89-0.94), 0.66 (0.58-0.71), and 1.00 (0.87-1.00), respectively, for ICH, PHE, and IVH segmentation. U-Net-based networks showed comparable, satisfactory performances on ICH and PHE segmentations (P > .05), but all nnU-Net variants achieved higher accuracy than the Brain Lesion Analysis and Segmentation Tool for CT (BLAST-CT) and DeepLabv3+ for all labels (P < .05). The Focal model showed improved performance in IVH segmentation compared with the Tversky, two-dimensional nnU-Net, U-Net, BLAST-CT, and DeepLabv3+ models (P < .05). Focal achieved concordance values of 0.98, 0.88, and 0.99 for ICH, PHE, and ICH volumes, respectively. The mean volumetric differences between the ground truth and prediction were 0.32 mL (95% CI: -8.35, 9.00), 1.14 mL (-9.53, 11.8), and 0.06 mL (-1.71, 1.84), respectively. In conclusion, U-Net-based networks provide accurate segmentation on CT images of spontaneous ICH, and Focal loss can address class imbalance. International Clinical Trials Registry Platform (ICTRP) no. ISRCTN93732214 Supplemental material is available for this article. © RSNA, 2022 Keywords: Head/Neck, Brain/Brain Stem, Hemorrhage, Segmentation, Quantification, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms.
RESUMEN
Importance: Hyperintense foci on diffusion-weighted imaging (DWI) that are spatially remote from the acute hematoma occur in 20% of people with acute spontaneous intracerebral hemorrhage (ICH). Tranexamic acid, a hemostatic agent that is under investigation for treating acute ICH, might increase DWI hyperintense lesions (DWIHLs). Objective: To establish whether tranexamic acid compared with placebo increased the prevalence or number of remote cerebral DWIHLs within 2 weeks of ICH onset. Design, Setting, and Participants: This prospective nested magnetic resonance imaging (MRI) substudy of a randomized clinical trial (RCT) recruited participants from the multicenter, double-blind, placebo-controlled, phase 3 RCT (Tranexamic Acid for Hyperacute Primary Intracerebral Hemorrhage [TICH-2]) from July 1, 2015, to September 30, 2017, and conducted follow-up to 90 days after participants were randomized to either the tranexamic acid or placebo group. Participants had acute spontaneous ICH and included TICH-2 participants who provided consent to undergo additional MRI scans for the MRI substudy and those who had clinical MRI data that were compatible with the brain MRI protocol of the substudy. Data analyses were performed on an intention-to-treat basis on January 20, 2020. Interventions: The tranexamic acid group received 1 g in 100-mL intravenous bolus loading dose, followed by 1 g in 250-mL infusion within 8 hours of ICH onset. The placebo group received 0.9% saline within 8 hours of ICH onset. Brain MRI scans, including DWI, were performed within 2 weeks. Main Outcomes and Measures: Prevalence and number of remote DWIHLs were compared between the treatment groups using binary logistic regression adjusted for baseline covariates. Results: A total of 219 participants (mean [SD] age, 65.1 [13.8] years; 126 men [57.5%]) who had brain MRI data were included. Of these participants, 96 (43.8%) were randomized to receive tranexamic acid and 123 (56.2%) were randomized to receive placebo. No baseline differences in demographic characteristics and clinical or imaging features were found between the groups. There was no increase for the tranexamic acid group compared with the placebo group in DWIHL prevalence (20 of 96 [20.8%] vs 28 of 123 [22.8%]; odds ratio [OR], 0.71; 95% CI, 0.33-1.53; P = .39) or mean (SD) number of DWIHLs (1.75 [1.45] vs 1.81 [1.71]; mean difference [MD], -0.08; 95% CI, -0.36 to 0.20; P = .59). In an exploratory analysis, participants who were randomized within 3 hours of ICH onset or those with chronic infarcts appeared less likely to have DWIHLs if they received tranexamic acid. Participants with probable cerebral amyloid angiopathy appeared more likely to have DWIHLs if they received tranexamic acid. Conclusions and Relevance: This substudy of an RCT found no evidence of increased prevalence or number of remote DWIHLs after tranexamic acid treatment in acute ICH. These findings provide reassurance for ongoing and future trials that tranexamic acid for acute ICH is unlikely to induce cerebral ischemic events. Trial Registration: isrctn.org Identifier: ISRCTN93732214.
Asunto(s)
Antifibrinolíticos , Ácido Tranexámico , Anciano , Antifibrinolíticos/uso terapéutico , Hemorragia Cerebral/diagnóstico por imagen , Hemorragia Cerebral/tratamiento farmacológico , Método Doble Ciego , Femenino , Hematoma , Humanos , Isquemia , Masculino , Ácido Tranexámico/uso terapéuticoRESUMEN
BACKGROUND: Depression is a substantial health and economic burden. In approximately one-third of patients, depression is resistant to first-line treatment; therefore, it is essential to find alternative treatments. Transcranial magnetic stimulation (TMS) is a neuromodulatory treatment involving the application of magnetic pulses to the brain that is approved in the United Kingdom and the United States in treatment-resistant depression. This trial aims to compare the clinical effectiveness, cost-effectiveness, and mechanism of action of standard treatment repetitive TMS (rTMS) targeted at the F3 electroencephalogram site with a newer treatment-a type of TMS called theta burst stimulation (TBS) targeted based on measures of functional brain connectivity. This protocol outlines brain imaging acquisition and analysis for the Brain Imaging Guided Transcranial Magnetic Stimulation in Depression (BRIGhTMIND) study trial that is used to create personalized TMS targets and answer the proposed mechanistic hypotheses. OBJECTIVE: The aims of the imaging arm of the BRIGhTMIND study are to identify functional and neurochemical brain signatures indexing the treatment mechanisms of rTMS and connectivity-guided intermittent theta burst TMS and to identify imaging-based markers predicting response to treatment. METHODS: The study is a randomized double-blind controlled trial with 1:1 allocation to either 20 sessions of TBS or standard rTMS. Multimodal magnetic resonance imaging (MRI) is acquired for each participant at baseline (before TMS treatment) with T1-weighted and task-free functional MRI during rest used to estimate TMS targets. For participants enrolled in the mechanistic substudy, additional diffusion-weighted sequences are acquired at baseline and at posttreatment follow-up 16 weeks after treatment randomization. Core data sets of T1-weighted and task-free functional MRI during rest are acquired for all participants and are used to estimate TMS targets. Additional sequences of arterial spin labeling, magnetic resonance spectroscopy, and diffusion-weighted images are acquired depending on the recruitment site for mechanistic evaluation. Standard rTMS treatment is targeted at the F3 electrode site over the left dorsolateral prefrontal cortex, whereas TBS treatment is guided using the coordinate of peak effective connectivity from the right anterior insula to the left dorsolateral prefrontal cortex. Both treatment targets benefit from the level of MRI guidance, but only TBS is provided with precision targeting based on functional brain connectivity. RESULTS: Recruitment began in January 2019 and is ongoing. Data collection is expected to continue until January 2023. CONCLUSIONS: This trial will determine the impact of precision MRI guidance on rTMS treatment and assess the neural mechanisms underlying this treatment in treatment-resistant depressed patients. TRIAL REGISTRATION: ISRCTN Registry ISRCTN19674644; https://www.isrctn.com/ISRCTN19674644. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/31925.
RESUMEN
OBJECTIVES: To test radiomics-based features extracted from noncontrast CT of patients with spontaneous intracerebral haemorrhage for prediction of haematoma expansion and poor functional outcome and compare them with radiological signs and clinical factors. MATERIALS AND METHODS: Seven hundred fifty-four radiomics-based features were extracted from 1732 scans derived from the TICH-2 multicentre clinical trial. Features were harmonised and a correlation-based feature selection was applied. Different elastic-net parameterisations were tested to assess the predictive performance of the selected radiomics-based features using grid optimisation. For comparison, the same procedure was run using radiological signs and clinical factors separately. Models trained with radiomics-based features combined with radiological signs or clinical factors were tested. Predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) score. RESULTS: The optimal radiomics-based model showed an AUC of 0.693 for haematoma expansion and an AUC of 0.783 for poor functional outcome. Models with radiological signs alone yielded substantial reductions in sensitivity. Combining radiomics-based features and radiological signs did not provide any improvement over radiomics-based features alone. Models with clinical factors had similar performance compared to using radiomics-based features, albeit with low sensitivity for haematoma expansion. Performance of radiomics-based features was boosted by incorporating clinical factors, with time from onset to scan and age being the most important contributors for haematoma expansion and poor functional outcome prediction, respectively. CONCLUSION: Radiomics-based features perform better than radiological signs and similarly to clinical factors on the prediction of haematoma expansion and poor functional outcome. Moreover, combining radiomics-based features with clinical factors improves their performance. KEY POINTS: ⢠Linear models based on CT radiomics-based features perform better than radiological signs on the prediction of haematoma expansion and poor functional outcome in the context of intracerebral haemorrhage. ⢠Linear models based on CT radiomics-based features perform similarly to clinical factors known to be good predictors. However, combining these clinical factors with radiomics-based features increases their predictive performance.
Asunto(s)
Hematoma , Tomografía Computarizada por Rayos X , Hemorragia Cerebral/diagnóstico por imagen , Hematoma/diagnóstico por imagen , Humanos , Curva ROCRESUMEN
BACKGROUND: Ataxia Telangiectasia (A-T) is an inherited multisystem disorder with cerebellar neurodegeneration. The relationships between imaging metrics of cerebellar health and neurological function across childhood in A-T are unknown, but may be important for determining timing and impact of therapeutic interventions. PURPOSE: To test the hypothesis that abnormalities of cerebellar structure, physiology and cellular health occur in childhood A-T and correlate with neurological disability, we performed multiparametric cerebellar MRI and establish associations with disease status in childhood A-T. METHODS: Prospective cross-sectional observational study. 22 young people (9 females / 13 males, age 6.6-17.8 years) with A-T and 24 matched healthy controls underwent 3-Tesla MRI with volumetric, diffusion and proton spectroscopic acquisitions. Participants with A-T underwent structured neurological assessment, and expression / activity of ataxia-telangiectasia mutated (ATM) kinase were recorded. RESULTS: Ataxia-telangiectasia participants had cerebellar volume loss (fractional total cerebellar volume: 5.3% vs 8.7%, P < 0.0005, fractional 4th ventricular volumes: 0.19% vs 0.13%, P < 0.0005), that progressed with age (fractional cerebellar volumes, r = -0.66, P = 0.001), different from the control group (t = -4.88, P < 0.0005). The relationship between cerebellar volume and age was similar for A-T participants with absent ATM kinase production and those producing non-functioning ATM kinase. Markers of cerebellar white matter injury were elevated in ataxia-telangiectasia vs controls (apparent diffusion coefficient: 0.89 × 10-3 mm2 s-1 vs 0.69 × 10-3 mm2 s-1, p < 0.0005) and correlated (age-corrected) with neurometabolite ratios indicating impaired neuronal viability (N-acetylaspartate:creatine r = -0.70, P < 0.001); gliosis (inositol:creatine r = 0.50, P = 0.018; combined glutamine/glutamate:creatine r = -0.55, P = 0.008) and increased myelin turnover (choline:creatine r = 0.68, P < 0.001). Fractional 4th ventricular volume was the only variable retained in the regression model predicting neurological function (adjusted r2 = 0.29, P = 0.015). CONCLUSIONS: Quantitative MRI demonstrates cerebellar abnormalities in children with A-T, providing non-invasive measures of progressive cerebellar injury and markers reflecting neurological status. These MRI metrics may be of value in determining timing and impact of interventions aimed at altering the natural history of A-T.
Asunto(s)
Ataxia Telangiectasia , Cerebelo , Neuroimagen/métodos , Sustancia Blanca , Adolescente , Ataxia Telangiectasia/diagnóstico por imagen , Ataxia Telangiectasia/metabolismo , Ataxia Telangiectasia/patología , Ataxia Telangiectasia/fisiopatología , Cerebelo/diagnóstico por imagen , Cerebelo/metabolismo , Cerebelo/patología , Cerebelo/fisiopatología , Niño , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Imagen Multimodal , Fenotipo , Estudios Prospectivos , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/metabolismo , Sustancia Blanca/patologíaRESUMEN
Background and Purpose- Blend, black hole, island signs, and hypodensities are reported to predict hematoma expansion in acute intracerebral hemorrhage. We explored the value of these noncontrast computed tomography signs in predicting hematoma expansion and functional outcome in our cohort of intracerebral hemorrhage. Methods- The TICH-2 (Tranexamic acid for IntraCerebral Hemorrhage-2) was a prospective randomized controlled trial exploring the efficacy and safety of tranexamic acid in acute intracerebral hemorrhage. Baseline and 24-hour computed tomography scans of trial participants were analyzed. Hematoma expansion was defined as an increase in hematoma volume of >33% or >6 mL on 24-hour computed tomography. Poor functional outcome was defined as modified Rankin Scale of 4 to 6 at day 90. Multivariable logistic regression was performed to identify predictors of hematoma expansion and poor functional outcome. Results- Of 2325 patients recruited, 2077 (89.3%) had valid baseline and 24-hour scans. Five hundred seventy patients (27.4%) had hematoma expansion while 1259 patients (54.6%) had poor functional outcome. The prevalence of noncontrast computed tomography signs was blend sign, 366 (16.1%); black hole sign, 414 (18.2%); island sign, 200 (8.8%); and hypodensities, 701 (30.2%). Blend sign (adjusted odds ratio [aOR] 1.53 [95% CI, 1.16-2.03]; P=0.003), black hole (aOR, 2.03 [1.34-3.08]; P=0.001), and hypodensities (aOR, 2.06 [1.48-2.89]; P<0.001) were independent predictors of hematoma expansion on multivariable analysis with adjustment for covariates. Black hole sign (aOR, 1.52 [1.10-2.11]; P=0.012), hypodensities (aOR, 1.37 [1.05-1.78]; P=0.019), and island sign (aOR, 2.59 [1.21-5.55]; P=0.014) were significant predictors of poor functional outcome. Tranexamic acid reduced the risk of hematoma expansion (aOR, 0.77 [0.63-0.94]; P=0.010), but there was no significant interaction between the presence of noncontrast computed tomography signs and benefit of tranexamic acid on hematoma expansion and functional outcome (P interaction all >0.05). Conclusions- Blend sign, black hole sign, and hypodensities predict hematoma expansion while black hole sign, hypodensities, and island signs predict poor functional outcome. Noncontrast computed tomography signs did not predict a better response to tranexamic acid. Clinical Trial Registration- URL: https://www.isrctn.com. Unique identifier: ISRCTN93732214.
Asunto(s)
Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/fisiopatología , Hematoma/tratamiento farmacológico , Ácido Tranexámico/farmacología , Anciano , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Estudios ProspectivosRESUMEN
BACKGROUND: Spontaneous intracerebral haemorrhage (SICH) is a common condition with high morbidity and mortality. Segmentation of haematoma and perihaematoma oedema on medical images provides quantitative outcome measures for clinical trials and may provide important markers of prognosis in people with SICH. METHODS: We take advantage of improved contrast seen on magnetic resonance (MR) images of patients with acute and early subacute SICH and introduce an automated algorithm for haematoma and oedema segmentation from these images. To our knowledge, there is no previously proposed segmentation technique for SICH that utilises MR images directly. The method is based on shape and intensity analysis for haematoma segmentation and voxel-wise dynamic thresholding of hyper-intensities for oedema segmentation. RESULTS: Using Dice scores to measure segmentation overlaps between labellings yielded by the proposed algorithm and five different expert raters on 18 patients, we observe that our technique achieves overlap scores that are very similar to those obtained by pairwise expert rater comparison. A further comparison between the proposed method and a state-of-the-art Deep Learning segmentation on a separate set of 32 manually annotated subjects confirms the proposed method can achieve comparable results with very mild computational burden and in a completely training-free and unsupervised way. CONCLUSION: Our technique can be a computationally light and effective way to automatically delineate haematoma and oedema extent directly from MR images. Thus, with increasing use of MR images clinically after intracerebral haemorrhage this technique has the potential to inform clinical practice in the future.
Asunto(s)
Hemorragia Cerebral/diagnóstico por imagen , Edema/diagnóstico por imagen , Hematoma/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Hemorragia Cerebral/complicaciones , Edema/etiología , Femenino , Hematoma/etiología , Humanos , Masculino , Persona de Mediana Edad , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagenRESUMEN
Brain network analysis using functional magnetic resonance imaging (fMRI) is a widely used technique. The first step of brain network analysis in fMRI is to detect regions of interest (ROIs). The signals from these ROIs are then used to evaluate neural networks and quantify neuronal dynamics. The two main methods to identify ROIs are based on brain atlas registration and clustering. This work proposes a bioinspired method that combines both paradigms. The method, dubbed HAnt, consists of an anatomical clustering of the signal followed by an ant clustering step. The method is evaluated empirically in both in silico and in vivo experiments. The results show a significantly better performance of the proposed approach compared to other brain parcellations obtained using purely clustering-based strategies or atlas-based parcellations.
Asunto(s)
Algoritmos , Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Atlas como Asunto , Percepción Auditiva/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Análisis por Conglomerados , Simulación por Computador , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
OBJECTIVES: To test whether administration of the antifibrinolytic drug tranexamic acid (TXA) in patients with spontaneous intracerebral haemorrhage (SICH) leads to increased prevalence of diffusion-weighted MRI-defined hyperintense ischaemic lesions (primary hypothesis) or reduced perihaematomal oedema volume, perihaematomal diffusion restriction and residual MRI-defined SICH-related tissue damage (secondary hypotheses). DESIGN: MRI substudy nested within the double-blind randomised controlled Tranexamic Acid for Hyperacute Primary Intracerebral Haemorrhage (TICH)-2 trial (ISRCTN93732214). SETTING: International multicentre hospital-based study. PARTICIPANTS: Eligible adults consented and randomised in the TICH-2 trial who were also able to undergo MRI scanning. To address the primary hypothesis, a sample size of n=280 will allow detection of a 10% relative increase in prevalence of diffusion-weighted imaging (DWI) hyperintense lesions in the TXA group with 5% significance, 80% power and 5% imaging data rejection. INTERVENTIONS: TICH-2 MRI substudy participants will undergo MRI scanning using a standardised protocol at day ~5 and day ~90 after randomisation. Clinical assessments, randomisation to TXA or placebo and participant follow-up will be performed as per the TICH-2 trial protocol. CONCLUSION: The TICH-2 MRI substudy will test whether TXA increases the incidence of new DWI-defined ischaemic lesions or reduces perihaematomal oedema or final ICH lesion volume in the context of SICH. ETHICS AND DISSEMINATION: The TICH-2 trial obtained ethical approval from East Midlands - Nottingham 2 Research Ethics Committee (12/EM/0369) and an amendment to allow the TICH-2 MRI sub study was approved in April 2015 (amendment number SA02/15). All findings will be published in peer-reviewed journals. The primary outcome results will also be presented at a relevant scientific meeting. TRIAL REGISTRATION NUMBER: ISRCTN93732214; Pre-results.