RESUMEN
The mechanical resilience of the knee meniscus is provided by a group of structural proteins in the extracellular matrix. Aging can alter the quantity and molecular structure of these proteins making the meniscus more susceptible to debilitating tears. In this study, we determined the effect of aging on the quantity of structural proteins and collagen crosslinks in human lateral meniscus, and examined whether the quantity of these molecules was predictive of tensile toughness (area under the stress-strain curve). Two age groups were tested: a young group under 40 and an older group over 65 years old. Using mass spectrometry, we quantified the abundance of proteins and collagen crosslinks in meniscal tissue that was adjacent to the dumbbell-shaped specimens used to measure uniaxial tensile toughness parallel or perpendicular to the circumferential fiber orientation. We found that the enzymatic collagen crosslink deoxypyridinoline had a significant positive correlation with toughness, and reductions in the quantity of this crosslink with aging were associated with a loss of toughness in the ground substance and fibers. The non-enzymatic collagen crosslink carboxymethyl-lysine increased in quantity with aging, and these increases corresponded to reductions in ground substance toughness. For the collagenous (Types I, II, IV, VI, VIII) and non-collagenous structural proteins (elastin, decorin, biglycan, prolargin) analyzed in this study, only the quantity of collagen VIII was predictive of toughness. This study provides valuable insights on the structure-function relationships of the human meniscus, and how aging causes structural adaptations that weaken the tissue's mechanical integrity.
Asunto(s)
Envejecimiento , Colágeno , Meniscos Tibiales , Humanos , Anciano , Adulto , Colágeno/metabolismo , Envejecimiento/fisiología , Masculino , Meniscos Tibiales/metabolismo , Femenino , Persona de Mediana Edad , Fenómenos Biomecánicos , Resistencia a la Tracción , Anciano de 80 o más Años , Adulto JovenRESUMEN
Objectives: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers, such as solid tumors, leukemia, lymphomas and breast cancer. It can also cause injuries to multiple organs, including the heart, liver, and brain or kidney, although cardiotoxicity is the most prominent side effect of DOX. In this study, we examined the potential effects of DOX on autophagy activity in two different mouse fibroblasts.Methods: Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX to assess changes in the expression of two commonly used autophagy protein markers, LC3II and p62. We also examined the effects of DOX the on expression of key genes that encode components of the molecular machinery and regulators modulating autophagy in response to both extracellular and intracellular signals.Results: We observed that LC3II levels increased and p62 levels decreased following the DOX treatment in NIH3T3 cells. However, similar effects were not observed in primary cardiac fibroblasts. In addition, DOX treatment induced the upregulation of a significant number of genes involved in autophagy in NIH3T3 cells, but not in primary cardiac fibroblasts.Conclusions: Taken together, these results indicate that DOX upregulates autophagy in fibroblasts in a cell-specific manner.
Asunto(s)
Estrés Oxidativo , Transducción de Señal , Humanos , Niño , Animales , Ratones , Células 3T3 NIH , Fibroblastos , Doxorrubicina/toxicidad , Autofagia , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , ApoptosisRESUMEN
OBJECTIVES: Osteoarthritis (OA) is a major concern in the United States and worldwide. Development and validation of robust decellularization techniques is critical in generating suitable bioscaffolds for future OA treatment options. DATA DESCRIPTIONS: In the present study, proteins from porcine auricular cartilage before and after decellularization were extracted, digested, and identified using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data represents protein profiles of both non-decellularized and decellularized porcine auricular cartilage. This data is intended to be useful to scientists who are interesting in generating biomaterials for potential relevant clinical applications using decellularized cartilage tissue.
Asunto(s)
Cartílago Auricular , Osteoartritis , Porcinos , Animales , Proteómica , Cromatografía Liquida , Espectrometría de Masas en Tándem , Ingeniería de Tejidos/métodosRESUMEN
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-ß) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-ß signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-ß inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-ß1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs, suggesting an antifibrotic activity by DOX in these fibroblasts. However, DOX only inhibited the TGF-ß1 induced expression of COL1 in NIH3T3 cells but not in CFs. In addition, we observed that DOX treatment reduced the expression of BMP1 in NIH3T3 but not primary cardiac fibroblasts. No significant changes in SMAD2 protein expression and phosphorylation in either cells were observed after DOX treatment. Finally, DOX inhibited the expression of Atf4 gene and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 genes in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-ß signaling pathway.
Asunto(s)
Cardiotoxicidad , Factor de Crecimiento Transformador beta , Animales , Ratones , Factor de Crecimiento Transformador beta/metabolismo , Cardiotoxicidad/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células 3T3 NIH , Fibroblastos/metabolismo , Transducción de Señal , Doxorrubicina/toxicidad , Células CultivadasRESUMEN
OBJECTIVE: Doxorubicin (DOX) is a highly effective chemotherapeutic used to treat many adult and pediatric cancers. However, its use is limited due to a dose-dependent cardiotoxicity, which can lead to lethal cardiomyopathy. In contrast to the extensive research efforts on toxic effects of DOX in cardiomyocytes, its effects and mechanisms on cardiac extracellular matrix (ECM) homeostasis and remodeling are poorly understood. In this study, we examined the potential effects of DOX on cardiac ECM to further our mechanistic understanding of DOX-induced cardiotoxicity. RESULTS: DOX-induced significant down-regulation of several ECM related genes in primary cardiac fibroblasts, including Adamts1, Adamts5, Col4a1, Col4a2, Col5a1, Fbln1, Lama2, Mmp11, Mmp14, Postn, and TGFß. Quantitative proteomics analysis revealed significant global changes in the fibroblast proteome following DOX treatment. A pathway analysis using iPathwayGuide of the differentially expressed proteins revealed changes in a list of biological pathways that involve cell adhesion, cytotoxicity, and inflammation. An apparent increase in Picrosirius red staining indicated that DOX-induced an increase in collagen production in cardiac primary fibroblasts after 3-day treatment. No significant changes in collagen organization nor glycoprotein production were observed.
Asunto(s)
Cardiotoxicidad , Doxorrubicina , Humanos , Niño , Ratones , Animales , Cardiotoxicidad/metabolismo , Doxorrubicina/farmacología , Miocitos Cardíacos , Colágeno/metabolismo , Colágeno/farmacología , Matriz Extracelular/metabolismo , Fibroblastos , Apoptosis , Estrés OxidativoRESUMEN
Doxorubicin (DOX)-induced cardiotoxicity has been widely observed, yet the specific impact on cardiac fibroblasts is not fully understood. Additionally, the modulation of the transforming growth factor beta (TGF-ß) signaling pathway by DOX remains to be fully elucidated. This study investigated DOX's ability to modulate the expression of genes and proteins involved in the TGF-ß signaling cascade in mouse fibroblasts from two sources by assessing the impact of DOX treatment on TGF-ß inducible expression of pivotal genes and proteins within fibroblasts. Mouse embryonic fibroblasts (NIH3T3) and mouse primary cardiac fibroblasts (CFs) were treated with DOX in the presence of TGF-ß1 to assess changes in protein levels by western blot and changes in mRNA levels by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Our results revealed a dose-dependent reduction in cellular communication network factor 2 (CCN2) protein levels upon DOX treatment in both NIH3T3 and CFs. Moreover, we observed that DOX inhibited the TGF-ß1 induced expression of BMP1 in NIH3T3 cells, while BMP1 levels remained high in CFs, and that TGF-ß1 induces the phosphorylation of SMAD2 in both NIH3T3 cells and CFs. While DOX treatment diminished the extent of phosphorylation, the reduction did not reach statistical significance. DOX also inhibited the TGF-ß1 induced expression of COL1 in NIH3T3 cells and CFs. Finally, DOX inhibited the TGF-ß1 induced expression of Atf4 and increased the expression of Cdkn1a, Id1, Id2, Runx1, Tgfb1, Inhba, Thbs1, Bmp1, and Stat1 in NIH3T3 cells but not CFs, indicating the potential for cell-specific responses to DOX and its modulation of the TGF-ß signaling pathway. Understanding the underlying mechanisms of the ability of DOX to modulate gene expression and signaling pathways in fibroblasts holds promise for future development of targeted therapeutic strategies to mitigate DOX-induced cardiotoxicity specifically affecting CFs.
RESUMEN
Proteins from hyaline or articular cartilage can be isolated and purified using a series of chemical extraction steps and various identification techniques including mass spectrometry and immunoblotting. The isolation and purification of proteins from cartilage will facilitate the study of specific proteins and multimeric complexes of cartilage proteins to better understand their functions in normal healthy cartilage as well as pathological conditions of cartilage. Cartilage tissue engineering efforts rely on the comprehensive understanding of the composition of cartilage and the function of each of the protein constituents.
Asunto(s)
Cartílago Articular , Cartílago Hialino , Cartílago Hialino/metabolismo , Cartílago Articular/metabolismo , Proteoglicanos/metabolismo , Colágeno/metabolismoRESUMEN
INTRODUCTION: The Veratrum genus is composed of plants containing a diverse set of steroidal alkaloids. Veratrum plant material has been utilized for centuries as herbal medicines, however the alkaloids have such a low therapeutic index that they are not used in modern medicine. Here we report an incident of inadvertent ingestion of V. parviflorum by hikers in Georgia that allowed detection, and in several instances identification of alkaloids from the plant, and correlated their presence within patient blood and breast milk specimens. CASE HISTORY: Eight patients, three male and five female, presented in the spring of 2020 and 2021 with symptoms requiring emergent medical attention after ingestion of Veratrum parviflorum. All patients believed the plants to be a local native species of wild leek, Allium tricoccum, locally known as ramps. Plants were identified using photographs as well as fresh and cooked plant material provided by patients, in consultation with botanists at the University of Georgia Herbarium. Written consent was obtained from all patients for collection of blood and breast milk specimens for laboratory identification of Veratrum alkaloids. METHODS: V. parviflorum plant material, and patient serum and breast milk were analyzed by high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-QTOF) to identify steroidal alkaloids. RESULTS: The V. parviflorum extract was confirmed to contain cyclopamine, veratramine, jervine, and muldamine. Two out of the eight patients had detectable concentrations of Veratrum alkaloids. Of the alkaloids identified in the plant, cyclopamine and jervine were detected within patient serum, and cyclopamine and veratramine were observed to be present in breast milk. DISCUSSION: Toxicity resulting from Veratrum steroidal alkaloids has primarily been reported from V. album and V. viride. This is the second report of V. parviflorum poisoning. The present work reports for the first time the presence of muldamine and jervine within V. parviflorum. This work provides the first instance of identification of Veratrum alkaloids in breast milk. Thus, the findings presented herein add to literature record causative agents contributing to the toxicity of V. parviflorum when ingested and potential for secondary poisoning through breastfeeding. CONCLUSION: V. parviflorum toxicity was observed to cause nausea, vomiting, hypotension, bradycardia, abdominal pain, light-headedness, blurred vision, and tingling in the arms. Patients experiencing mild symptoms improved with supportive care, IV fluids, and antiemetics, but hemodynamically unstable patients required atropine and vasopressors. This study demonstrated that more lipophilic Veratrum alkaloids can be passed along in breast milk, which suggests additional precautions may be critical to limit further poisonings.
Asunto(s)
Alcaloides , Intoxicación por Plantas , Veratrum , Femenino , Humanos , Leche Humana , Alcaloides de Veratrum , Intoxicación por Plantas/tratamiento farmacológicoRESUMEN
OBJECTIVES: S100A9, an alarmin that can form calprotectin (CP) heterodimers with S100A8, is mainly produced by keratinocytes and innate immune cells. The contribution of keratinocyte-derived S100A9 to psoriasis (Ps) and psoriatic arthritis (PsA) was evaluated using mouse models, and the potential usefulness of S100A9 as a Ps/PsA biomarker was assessed in patient samples. METHODS: Conditional S100A9 mice were crossed with DKO* mice, an established psoriasis-like mouse model based on inducible epidermal deletion of c-Jun and JunB to achieve additional epidermal deletion of S100A9 (TKO* mice). Psoriatic skin and joint disease were evaluated in DKO* and TKO* by histology, microCT, RNA and proteomic analyses. Furthermore, S100A9 expression was analysed in skin, serum and synovial fluid samples of patients with Ps and PsA. RESULTS: Compared with DKO* littermates, TKO* mice displayed enhanced skin disease severity, PsA incidence and neutrophil infiltration. Altered epidermal expression of selective pro-inflammatory genes and pathways, increased epidermal phosphorylation of STAT3 and higher circulating TNFα were observed in TKO* mice. In humans, synovial S100A9 levels were higher than the respective serum levels. Importantly, patients with PsA had significantly higher serum concentrations of S100A9, CP, VEGF, IL-6 and TNFα compared with patients with only Ps, but only S100A9 and CP could efficiently discriminate healthy individuals, patients with Ps and patients with PsA. CONCLUSIONS: Keratinocyte-derived S100A9 plays a regulatory role in psoriatic skin and joint disease. In humans, S100A9/CP is a promising marker that could help in identifying patients with Ps at risk of developing PsA.
RESUMEN
Complications related to atherosclerosis account for approximately 1 in 4 deaths in the United States and treatment has focused on lowering serum LDL-cholesterol levels with statins. However, approximately 50% of those diagnosed with atherosclerosis have blood cholesterol levels within normal parameters. Human fortilin is an anti-apoptotic protein and a factor in macrophage-mediated atherosclerosis and is hypothesized to protect inflammatory macrophages from apoptosis, leading to subsequent cardiac pathogenesis. Fortilin is unique because it provides a novel drug target for atherosclerosis that goes beyond lowering cholesterol and utilization of a solution nuclear magnetic resonance (NMR) spectroscopy, structure-based drug discovery approach requires milligram quantities of pure, bioactive, recombinant fortilin. Here, we designed expression constructs with different affinity tags and protease cleavage sites to find optimal conditions to obtain the quantity and purity of protein necessary for structure activity relationship studies. Plasmids encoding fortilin with maltose binding protein (MBP), 6-histidine (6His) and glutathione-S-transferase (GST), N- terminal affinity tags were expressed and purified from Escherichia coli (E. coli). Cleavage sites with tobacco etch virus (TEV) protease and human rhinovirus (HRV) 3C protease were assessed. Despite high levels of expression of soluble protein, the fusion constructs were resistant to proteinases without the inclusion of amino acids between the cleavage site and N-terminus. We surveyed constructs with increasing lengths of glycine/serine (GGS) linkers between the cleavage site and fortilin and found that inclusion of at least one GGS insert led to successful protease cleavage and pure fortilin with conserved binding to calcium as measured by NMR.
Asunto(s)
Calcio/química , Proteínas Recombinantes de Fusión/genética , Proteína Tumoral Controlada Traslacionalmente 1/genética , Proteasas Virales 3C/química , Sitios de Unión , Calcio/metabolismo , Clonación Molecular , Endopeptidasas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Histidina/genética , Histidina/metabolismo , Humanos , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/metabolismo , Modelos Moleculares , Oligopéptidos/genética , Oligopéptidos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Solubilidad , Proteína Tumoral Controlada Traslacionalmente 1/química , Proteína Tumoral Controlada Traslacionalmente 1/metabolismoRESUMEN
OBJECTIVE: Extracellular matrix proteins play important roles in embryonic development and antibodies that specifically detect these proteins are essential to understanding their function. The zebrafish embryo is a popular model for vertebrate development but suffers from a dearth of authenticated antibody reagents for research. Here, we describe a novel antibody designed to detect the minor fibrillar collagen chain Col11a1a in zebrafish (AB strain). RESULTS: The Col11a1a antibody was raised in rabbit against a peptide comprising a unique sequence within the zebrafish Col11a1a gene product. The antibody was affinity-purified and characterized by ELISA. The antibody is effective for immunoblot and immunohistochemistry applications. Protein bands identified by immunoblot were confirmed by mass spectrometry and sensitivity to collagenase. Col11a1a knockout zebrafish were used to confirm specificity of the antibody. The Col11a1a antibody labeled cartilaginous structures within the developing jaw, consistent with previously characterized Col11a1 antibodies in other species. Col11a1a within formalin-fixed paraffin-embedded zebrafish were recognized by the antibody. The antibodies and the approaches described here will help to address the lack of well-defined antibody reagents in zebrafish research.
Asunto(s)
Colágeno Tipo XI , Pez Cebra , Animales , Anticuerpos , Proteínas de la Matriz Extracelular , Péptidos , ConejosRESUMEN
Oncostatin M (OSM) is a pleiotropic, interleukin-6 family inflammatory cytokine that plays an important role in inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis, and cancer progression and metastasis. Recently, elevated OSM levels have been found in the serum of COVID-19 patients in intensive care units. Multiple anti-OSM therapeutics have been investigated, but to date no OSM small molecule inhibitors are clinically available. To pursue a high-throughput screening and structure-based drug discovery strategy to design a small molecule inhibitor of OSM, milligram quantities of highly pure, bioactive OSM are required. Here, we developed a reliable protocol to produce highly pure unlabeled and isotope enriched OSM from E. coli for biochemical and NMR studies. High yields (ca. 10 mg/L culture) were obtained in rich and minimal defined media cultures. Purified OSM was characterized by mass spectrometry and circular dichroism. The bioactivity was confirmed by induction of OSM/OSM receptor signaling through STAT3 phosphorylation in human breast cancer cells. Optimized buffer conditions yielded 1H, 15N HSQC NMR spectra with intense, well-dispersed peaks. Titration of 15N OSM with a small molecule inhibitor showed chemical shift perturbations for several key residues with a binding affinity of 12.2 ± 3.9 µM. These results demonstrate the value of bioactive recombinant human OSM for NMR-based small molecule screening.
Asunto(s)
Descubrimiento de Drogas/métodos , Oncostatina M/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Línea Celular Tumoral , Humanos , Espectroscopía de Resonancia Magnética/métodos , Simulación del Acoplamiento Molecular , Oncostatina M/química , Oncostatina M/metabolismo , Fosforilación , Unión Proteica , Factor de Transcripción STAT3/metabolismo , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
Osteoarthritis is a major concern in the United States and worldwide. Current non-surgical and surgical approaches alleviate pain but show little evidence of cartilage restoration. Cell-based treatments may hold promise for the regeneration of hyaline cartilage-like tissue at the site of injury or wear. Cell-cell and cell-matrix interactions have been shown to drive cell differentiation pathways. Biomaterials for clinically relevant applications can be generated from decellularized porcine auricular cartilage. This material may represent a suitable scaffold on which to seed and grow chondrocytes to create new cartilage. In this study, we used decellularization techniques to create an extracellular matrix scaffold that supports chondrocyte cell attachment and growth in tissue culture conditions. Results presented here evaluate the decellularization process histologically and molecularly. We identified new and novel biomarker profiles that may aid future cartilage decellularization efforts. Additionally, the resulting scaffold was characterized using scanning electron microscopy, fluorescence microscopy, and proteomics. Cellular response to the decellularized scaffold was evaluated by quantitative real-time PCR for gene expression analysis.
Asunto(s)
Diferenciación Celular , Condrogénesis , Cartílago Auricular/química , Matriz Extracelular/química , Ensayo de Materiales , Andamios del Tejido/química , Animales , Línea Celular , Humanos , PorcinosRESUMEN
A primary component of exercise, mechanical signals, when applied in the form of low intensity vibration (LIV), increases mesenchymal stem cell (MSC) osteogenesis and proliferation. While it is generally accepted that exercise effectively combats the deleterious effects of aging in the musculoskeletal system, how long-term exercise affects stem cell aging, which is typified by reduced proliferative and differentiative capacity, is not well explored. As a first step in understanding the effect of long-term application of mechanical signals on stem cell function, we investigated the effect of LIV during in vitro expansion of MSCs. Primary MSCs were subjected to either a control or to a twice-daily LIV regimen for up to sixty cell passages (P60) under in vitro cell expansion conditions. LIV effects were assessed at both early passage (EP) and late passage (LP). At the end of the experiment, P60 cultures exposed to LIV maintained a 28% increase of cell doubling and a 39% reduction in senescence-associated ß-galactosidase activity (p < 0.01) but no changes in telomere lengths and p16INK4a levels were observed. Prolonged culture-associated decreases in osteogenic and adipogenic capacity were partially protected by LIV in both EP and LP groups (p < 0.05). Mass spectroscopy of late passage MSC indicated a synergistic decrease of actin and microtubule cytoskeleton-associated proteins in both control and LIV groups while LIV induced a recovery of proteins associated with oxidative reductase activity. In summary, our findings show that the application of long-term mechanical challenge (+LIV) during in vitro expansion of MSCs for sixty passages significantly alters MSC proliferation, differentiation and structure. This suggests LIV as a potential tool to investigate the role of physical activity during aging.
Asunto(s)
Mecanotransducción Celular/fisiología , Células Madre Mesenquimatosas/fisiología , Vibración/efectos adversos , Citoesqueleto de Actina/metabolismo , Adipogénesis , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Senescencia Celular , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis , beta-Galactosidasa/metabolismoRESUMEN
The motor features of Parkinson's disease (PD) result from the loss of dopaminergic (DA) neurons in the substantia nigra with autophagy dysfunction being closely linked to this disease. A PD-causing familial mutation in VPS35 (D620N) has been reported to inhibit autophagy. In order to identify signaling pathways responsible for this autophagy defect, we performed an unbiased screen using RNA sequencing (RNA-Seq) of wild-type or VPS35 D620N-expressing retinoic acid-differentiated SH-SY5Y cells. We report that VPS35 D620N-expressing cells exhibit transcriptome changes indicative of alterations in extracellular matrix (ECM)-receptor interaction as well as PI3K-AKT signaling, a pathway known to regulate autophagy. Hyaluronan (HA) is a major component of brain ECM and signals via the ECM receptors CD44, a top RNA-Seq hit, and HA-mediated motility receptor (HMMR) to the autophagy-regulating PI3K-AKT pathway. We find that high (>950â¯kDa), but not low (15-40â¯kDa), molecular weight HA treatment inhibits autophagy. In addition, VPS35 D620N facilitated enhanced HA-AKT signaling. Transcriptomic assessment and validation of protein levels identified the differential expression of CD44 and HMMR isoforms in VPS35 D620N mutant cells. We report that knockdown of HMMR or CD44 results in upregulated autophagy in cells expressing wild-type VPS35. However, only HMMR knockdown resulted in rescue of autophagy dysfunction by VPS35 D620N indicating a potential pathogenic role for this receptor and HA signaling in Parkinson's disease.
Asunto(s)
Enfermedad de Parkinson , Proteínas de Transporte Vesicular , Autofagia , Humanos , Receptores de Hialuranos/genética , Ácido Hialurónico , Fosfatidilinositol 3-Quinasas , Proteínas de Transporte Vesicular/genéticaRESUMEN
The Center of Biomedical Research Excellence in Matrix Biology strives to improve our understanding of extracellular matrix at molecular, cellular, tissue, and organismal levels to generate new knowledge about pathophysiology, normal development, and regenerative medicine. The primary goals of the Center are to i) support junior investigators, ii) enhance the productivity of established scientists, iii) facilitate collaboration between both junior and established researchers, and iv) build biomedical research infrastructure that will support research relevant to cell-matrix interactions in disease progression, tissue repair and regeneration, and v) provide access to instrumentation and technical support. A Pilot Project program provides funding to investigators who propose applying their expertise to matrix biology questions. Support from the National Institute of General Medical Sciences at the National Institutes of Health that established the Center of Biomedical Research Excellence in Matrix Biology has significantly enhanced the infrastructure and the capabilities of researchers at Boise State University, leading to new approaches that address disease diagnosis, prevention, and treatment. New multidisciplinary collaborations have been formed with investigators who may not have previously considered how their biomedical research programs addressed fundamental and applied questions involving the extracellular matrix. Collaborations with the broader matrix biology community are encouraged.
Asunto(s)
Investigación Biomédica , Conducta Cooperativa , Matriz Extracelular/metabolismo , Investigadores , Comités Consultivos , Selección de Profesión , Humanos , EstudiantesRESUMEN
Aim: Umbilical cord blood (UCB) sourced allografts are promising interventions for tissue regeneration. As applications of these allografts and regulations governing them continue to evolve, we were prompted to identify parameters determining their quality, safety and regenerative potential. Materials & methods: Flow-cytometry, mass-spectrometry, protein multiplexing, nanoparticle tracking analysis and standard biological techniques were employed. Results: Quality attributes of a uniquely processed UCB-allograft (UCBr) were enumerated based on identity (cell viability, immunophenotyping, proteomic profiling, and quantification of relevant cytokines); safety (bioburden and microbiological screening), purity (endotoxin levels) and potency (effect of UCBr on chondrocytes and mesenchymal stem cells derived exosomes). These attributes were stable up to 24 months in cryopreserved UCBr. Conclusion: We identified a comprehensive panel of tests to establish the clinical efficacy and quality control attributes of a UCB-sourced allograft.
Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical , Criopreservación , Sangre Fetal , Células Madre Mesenquimatosas , Aloinjertos , Supervivencia Celular , Sangre Fetal/citología , Sangre Fetal/metabolismo , Citometría de Flujo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismoRESUMEN
Notch signaling is a form of intercellular communication which plays pivotal roles at various stages in development and disease. Previous findings have hinted that integrins and extracellular matrix may regulate Notch signaling, although a mechanistic basis for this interaction had not been identified. Here, we reveal that the regulation of Notch by integrins and extracellular matrix is carried out by Src family kinases (SFKs) working downstream of integrins. We identify a physical interaction between the SFK member, c-Src, and the Notch intracellular domain (NICD) that is enhanced by ß3 integrin and the integrin binding ECM protein, MAGP2. Our results demonstrate that c-Src directly phosphorylates the NICD at specific tyrosine residues and that mutation of these phosphorylation sites increases Notch responsive transcriptional activity. Furthermore, we also find that phosphorylation of the NICD by SFKs attenuates Notch mediated transcription by decreasing recruitment of MAML to the Notch co-transcriptional complex. Finally, we also find that SFK activity decreases NICD half-life. Collectively, our results provide important mechanistic data that underlie the emerging role of Notch as a general sensor and responder to extracellular signals.
Asunto(s)
Proteína Tirosina Quinasa CSK/metabolismo , Proteínas de Unión al ADN/metabolismo , Endotelio Vascular/fisiología , Matriz Extracelular/metabolismo , Receptor Notch1/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Proteínas Contráctiles/metabolismo , Endotelio Vascular/patología , Semivida , Humanos , Integrina beta3/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Fosforilación , Unión Proteica , Estabilidad Proteica , Transducción de SeñalRESUMEN
Ligament wound healing involves the proliferation of a dense and disorganized fibrous matrix that slowly remodels into scar tissue at the injury site. This remodeling process does not fully restore the highly aligned collagen network that exists in native tissue, and consequently repaired ligament has decreased strength and durability. In order to identify treatments that stimulate collagen alignment and strengthen ligament repair, there is a need to develop in vitro models to study fibroblast activation during ligament wound healing. The objective of this study was to measure gene expression and matrix protein accumulation in fibroblast-collagen gels that were subjected to different static stress conditions (stress-free, biaxial stress, and uniaxial stress) for three time points (1, 2 or 3 weeks). By comparing our in vitro results to prior in vivo studies, we found that stress-free gels had time-dependent changes in gene expression (col3a1, TnC) corresponding to early scar formation, and biaxial stress gels had protein levels (collagen type III, decorin) corresponding to early scar formation. This is the first study to conduct a targeted evaluation of ligament healing biomarkers in fibroblast-collagen gels, and the results suggest that biomimetic in-vitro models of early scar formation should be initially cultured under biaxial stress conditions.
Asunto(s)
Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Ligamentos , Modelos Biológicos , Cicatrización de Heridas , Animales , Matriz Extracelular/patología , Fibroblastos/patología , Geles , Ligamentos/lesiones , Ligamentos/metabolismo , Ligamentos/patología , Ratones , Células 3T3 NIHRESUMEN
Although harboring the apolipoprotein E4 (APOE4) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.