Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Pollut Res Int ; 30(21): 60907-60919, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37041361

RESUMEN

Exposure to benzene causes immunosuppression, but the mechanism has not been clarified. In this study, mice were subcutaneously injected with different concentrations (0, 6, 30 and 150 mg/kg) of benzene for four weeks. The lymphocytes of bone marrow (BM), spleen and peripheral blood (PB) and the level of short-chain fatty acids (SCFAs) in mouse intestine were measured. The results showed that benzene exposure led to a reduction in CD3+ and CD8+ lymphocytes in mouse BM, spleen and PB, and CD4+ lymphocytes were increased in mouse spleen but decreased in mouse BM and PB after 150 mg/kg benzene exposure. In addition, Pro-B lymphocytes were reduced in mouse BM in the 6 mg/kg group. Besides, the levels of IgA, IgG, IgM, IL-2, IL-4, IL-6, IL-17a, TNF-α and IFN-γ in mouse serum were reduced after benzene exposure. Furthermore, the levels of acetic, propionic, butyric and hexanoic acid were reduced in mouse intestine, and the AKT-mTOR signaling pathway was activated in mouse BM cells after benzene exposure. Our results demonstrate that benzene induced immunosuppression in mice, and the B lymphocytes in BM are more sensible to benzene-induced toxicity. The reduction in mouse intestinal SCFAs as well as the activation of AKT-mTOR signaling may be related to the occurrence of benzene immunosuppression. Our study provides new insight for further mechanistic research on benzene-induced immunotoxicity.


Asunto(s)
Benceno , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Benceno/toxicidad , Subgrupos Linfocitarios , Intestinos , Ácidos Grasos Volátiles
2.
Environ Geochem Health ; 45(6): 2803-2838, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36598611

RESUMEN

Microplastics (MPs) have become increasingly serious global problems due to their wide distribution and complicated impacts on living organisms. To obtain a comprehensive overview of the latest research progress on MPs, we conducted a bibliometric analysis combined with a literature review. The results showed that the number of studies on MPs has grown exponentially since 2010. Recently, the hotspot on MPs has shifted to terrestrial ecosystems and biological health risks, including human health risks. In addition, the toxic effects, identification and quantification of MPs are relatively new research hotspots. We subsequently provide a review of MPs studies related to health risks to terrestrial higher mammals and, in particular, to humans, including detection methods and potential toxicities based on current studies. Currently, MPs have been found existing in human feces, blood, colon, placenta and lung, but it is still unclear whether this is associated with related systemic diseases. In vivo and in vitro studies have demonstrated that MPs cause intestinal toxicity, metabolic disruption, reproductive toxicity, neurotoxicity, immunotoxicity through oxidative stress, apoptosis and specific pathways, etc. Notably, in terms of combined effects with pollutants and neurotoxicity, the effects of MPs are still controversial. Future attention should be paid to the detection and quantification of MPs in human tissues, exploring the combined effects and related mechanisms of MPs with other pollutants and clarifying the association between MPs and the development of pre-existing diseases. Our work enhances further understanding of the potential health risks of MPs to terrestrial higher mammals.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos/toxicidad , Plásticos , Ecosistema , Contaminantes Ambientales/análisis , Bibliometría , Contaminantes Químicos del Agua/análisis , Mamíferos
4.
Environ Pollut ; 311: 119928, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35970343

RESUMEN

Benzene exposure can cause pancytopenia and immunosuppression, leading to serious diseases such as aplastic anemia (AA) or acute myeloid leukemia (AML), but the underlying mechanism has not been fully elucidated. Hypoxia-inducible factor 1 (HIF-1) is an important transcription factor that regulates many downstream target genes. In this study, we reported a novel mechanism by which high expression of HIF-1α alleviated benzene toxicity. Mice with high expression of HIF-1α (HIF-1α+) were obtained by the Tet-on system and doxycycline induction, and they and wild-type (WT) mice were exposed to 150 mg/kg benzene for 0, 1, 3, 7, 10, 14, and 28 days. Dynamic changes in hematopoietic and immune-related indicators and the role of HIF-1α were explored. The level of white blood cells in mice reached the highest level on the third day, and immunity was activated and then suppressed within 10 days. Significant pancytopenia and immunosuppression occurred at 14 days and were more pronounced at 28 days. The levels of HIF-1α, EPO, VEGF, RORγt, and IL-17 in WT mice gradually decreased with increasing benzene exposure days, while the levels of Foxp3 and IL-10 increased. These changes were alleviated in HIF-1α+ mice. High expression of HIF-1α increased the levels of EPO and VEGF, which helped to maintain the stability of the hematopoietic microenvironment. Simultaneously, it attenuated benzene-induced immunosuppression by alleviating the Th17/Treg imbalance. HIF-1α is expected to be a new target for benzene-induced diseases such as AA and AML.


Asunto(s)
Leucemia Mieloide Aguda , Pancitopenia , Animales , Benceno/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Terapia de Inmunosupresión , Ratones , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular
5.
Chem Biol Interact ; 362: 110004, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661779

RESUMEN

Benzene is a pollutant that widely exists in the environment and in occupational workplaces. Its exposure is closely associated with hematological disorders and even leukemia, which poses a significant threat to public health. Thus, the underlying mechanisms should be explored. In the current study, it was investigated whether ferroptosis plays a role in benzene hematopoietic toxicity and related mechanisms. Mice were subcutaneously injected with benzene at 150 mg/kg b.w. to establish a hematotoxicity model. Four weeks later, the mice exposed to benzene exhibited a decrease in white blood cells, red blood cells, and hemoglobin level, as well as reduction in frequency of hematopoietic stem and progenitor cells (HS/PCs) and the colony forming abilities of CFU-G, CFU-M, CFU-GM, and CFU-GEMM. Simultaneously, apart from ferroptosis features in the mitochondrial morphology, decreased ATP and mitochondrial membrane potential, alterations in biochemical indices and gene expression were also observed, such as increased intracellular iron and lipid peroxidation, glutathione (GSH) depletion, and reduced glutathione peroxidase (GSH-Px) level, and upregulated PTGS2. Meanwhile, markedly altered expression of SLC7A11, GPX4, GCLC, NOX1, TFRC, FTH1, and FTL hinted that redox imbalance and dysfunction of iron uptake and storage are vital to induce ferroptosis. Additionally, decreased cytoplasmic NRF2 and increased nuclear NRF2 were also found, suggesting the activation of the NRF2 pathway. More importantly, inhibition of ferroptosis with ferrostatin-1 (Fer-1) or deferoxamine (DFO) partially relieved the hematopoietic injuries. Our findings imply that dysregulation in the system Xc-/GPX4 axis, iron metabolism, and activation of the NRF2 pathway play a crucial role in benzene-induced ferroptosis, and reveals that taking ferroptosis as a target may be a potential intervention strategy for benzene-induced hematotoxicity.


Asunto(s)
Ferroptosis , Hierro , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Animales , Benceno/toxicidad , Ferroptosis/efectos de los fármacos , Glutatión/metabolismo , Hierro/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Environ Toxicol Pharmacol ; 92: 103866, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35489704

RESUMEN

The herbicide glyphosate is being used worldwide. Hematological toxicity caused by glyphosate exposure has been reported, but the underlying mechanisms remain unclear. In this study, classical toxicology methods and RNA sequencing were performed to explore the molecular mechanisms related to glyphosate hematotoxicity. We found that 500 mg/kg b.w. glyphosate-based herbicide (GBH) significantly decreased leukocyte, neutrophil, lymphocyte and monocyte counts, as well as inhibited colony-forming abilities of CFU-GM, CFU-G and CFU-GEMM. RNA sequencing identified 82 and 48 differentially expressed genes (DEGs) in BM cells after treatment with 250 mg/kg and 500 mg/kg GBH, respectively. Meanwhile, GO and KEGG analyses revealed that the MAPK signaling pathway, hematopoietic cell lineage and cytokine-cytokine receptor interactions were vital pathways involved in GBH-induced toxicity in BM cells. Notably, Nr4a, Fos, Thbs1 and tnfrsf19 contributed to the hematotoxicity of GBH by regulating hematopoietic stem cell functions. In summary, our efforts enhance the understanding of the glyphosate hematotoxic responses and facilitate future studies on its corresponding mechanisms.


Asunto(s)
Herbicidas , Transcriptoma , Animales , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/toxicidad , Células Madre Hematopoyéticas , Herbicidas/metabolismo , Herbicidas/toxicidad , Ratones , Glifosato
7.
Chem Biol Interact ; 354: 109836, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35092719

RESUMEN

Benzene is a widely used chemical and an environmental pollutant. Exposure to benzene can cause blood diseases, but the mechanisms underlying benzene haematotoxicity have not been fully clarified. Ecotropic virus integration site-1 (Evi1), a transcription factor, plays important roles in normal haematopoiesis and haematological diseases. In this study, we investigated the role and mechanism of Evi1 in benzene-induced haematotoxicity. We found that benzene exposure significantly increased Evi1 level in white blood cells (WBCs) in occupational benzene workers as well as mouse bone marrow cells. Further in vitro results demonstrated that compared with control cells exposed to same 1,4-benzoquinone (1,4-BQ, an important active metabolite of benzene) concentration, Evi1 downregulation significantly reduced cell proliferation, and disrupted cell viability, apoptosis, erythroid and megakaryotic cell differentiation and cell cycle. Additionally, down-regulation of Evi1 suppressed phosphoinositide 3-kinase (PI3K)/mTOR signalling pathway and elevated its target gene Serpinb2 following 1,4-BQ exposure. Moreover, the PI3K activator could partially relieve the inhibitory effect of down-regulation of Evi1 on cell proliferation and increase cell arrest in in G2/M phase. What's more, downregulation of Serpinb2 could partially alleviate proliferation inhibition and reverse cell cycle changes in G0/G1 phase and S phase induced by Evi1 inhibition. In conclusion, our data revealed that Evi1 downregulation aggravated the inhibition of cell proliferation and arrested cells in the G0/G1 phase when exposed to 1,4-BQ, potentially by inactivating the PI3K/mTOR pathway and upregulating downstream target gene Serpinb2. Our study provides novel insights on mechanism by which Evi1 participates in benzene-induced haematotoxicity.


Asunto(s)
Fosfatidilinositol 3-Quinasas
8.
Toxicology ; 464: 152990, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34673135

RESUMEN

Benzene is a typical hematopoietic toxic substance, that can cause serious blood and circulatory system diseases such as aplastic anemia, myelodysplastic syndrome and acute myeloid leukemia, but the immunological mechanism by which this occurs is not clear. T helper cells play a key role in regulating the immune balance in the body. In this study, benzene-induced hematopoietic toxicity BALB/c mice model was established, and changes in immune organs and T helper cell subsets (Th1, Th2, Th17 and Treg cells) were explored. At 28 days after subcutaneous injection of 150 mg/kg benzene, mice showed pancytopenia and obvious pathological damage to the bone marrow, spleen, and thymus. Flow cytometry revealed that the number of CD4+CD25+Foxp3+ Treg cells in the spleen increased significantly. The level of IL-10 in the spleen, serum, and bone marrow increased, while the levels of IL-17 in the spleen and serum decreased. Furthermore, the levels of CD4 and CD8 proteins in the spleen decreased. Immunofluorescence results showed that levels of Foxp3, a specific transcription factor that induced the differentiation of Treg cells, increased after exposure to benzene. Our results demonstrate that immunosuppression occurred in the benzene-induced hematopoietic toxicity model mice, and Treg cells and secreted IL-10 may play a key role in the process.


Asunto(s)
Benceno/toxicidad , Hematopoyesis/efectos de los fármacos , Interleucina-10/inmunología , Linfocitos T Reguladores/inmunología , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Diferenciación Celular/efectos de los fármacos , Hematopoyesis/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Bazo/efectos de los fármacos , Bazo/patología , Linfocitos T Colaboradores-Inductores/inmunología , Timo/efectos de los fármacos , Timo/patología
9.
Toxicol Res (Camb) ; 10(4): 706-718, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34484662

RESUMEN

Benzene, a known occupational and environmental contaminant, has been recognized as the hematotoxin and human carcinogen. Lipids have a variety of important physiological functions and the abnormal lipid metabolism has been reported to be closely related to the occurrence and development of many diseases. In the present study, we aim to utilize LC-MS/MS lipidomic platform to identify novel biomarkers and provide scientific clues for mechanism study of benzene hematotoxicity. Results showed that a total of 294 differential metabolites were obtained from the comparison of benzene-treated group and control group. The glycerophospholipid pathway was altered involving the down-regulation of the levels of phosphatidylcholine and phosphatidylserine. In addition, phosphatidylethanolamine (PE) and 1-Acyl-sn-glycero-3-phosphocholine levels were increased in benzene-treated group. Based on the relationship between PE and autophagy, we then found that effective biomarker of autophagy, Beclin1 and LC3B, were increased remarkably. Furthermore, following benzene treatment, significant decreases in glucosylceramide (GlcCer) and phytosphingosine (PHS) levels in sphingolipid pathway were observed. Simultaneously, the levels of proliferation marker (PCNA and Ki67) and apoptosis regulator (Bax and Caspase-3) showed clear increases in benzene-exposed group. Based on our results, we speculate that disturbances in glycerophospholipid pathway play an important role in the process of benzene-induced hematopoietic toxicity by affecting autophagy, while sphingolipid pathway may also serve as a vital role in benzene-caused toxicity by regulating proliferation and apoptosis. Our study provides basic study information for the future biomarker and mechanism research underlying the development of benzene-induced blood toxicity.

10.
Ecotoxicol Environ Saf ; 218: 112296, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33962271

RESUMEN

Microplastics (MPs) are currently a global environmental pollutants and health hazards that caused by MPs cannot be ignored. However, studies on MP toxicity in mammals are scare. Here, we investigated the effects of two doses (0.1 mg and 0.5 mg) of 5 µm polystyrene microplastic (PS-MP) particles on the hematological system of mice through traditional toxicology experiments and assessed the related potential biological mechanisms using transcriptome sequencing analysis. The toxicological examinations showed that the 0.5 mg dose significantly decreased white blood cell count, increased Pit count, and inhibited the growth of colony-forming unit CFU-G, CFU-M and CFU-GM. Compared with the control group, there were 41 differentially expressed genes (DEGs) in the 0.1 mg-treated group and 32 significantly changed genes in 0.5 mg-treated group. Of note, eight genes were found to be significantly altered in both the PS-MP-treated groups. Gene ontology analysis showed that DEGs were mainly involved in T cell homeostasis, response to osmotic stress, extracellular matrix and structure organization, and metabolic process of NADP and nucleotides. In addition, pathway analysis revealed that the Jak/Stat pathway, pentose and glucuronate interconversions, nicotinate and nicotinamide metabolism, biosynthesis of unsaturated fatty acids, and the pentose phosphate pathway were involved in PS-MP-induced toxicity in mice. These results indicated that PS-MP exposure can cause hematotoxicity to some extent, impact gene expression, and disturb related molecular and biological pathways in mouse bone marrow cells. Our study provides fundamental data on the hematotoxicity of PS-MPs in terrestrial mammals that will help to further assess the corresponding health risks in these mammals.

11.
Ecotoxicol Environ Saf ; 207: 111490, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33120278

RESUMEN

Benzene is a ubiquitous, occupational, and environmental hematotoxic and leukemogen. Damage to hematopoietic stem cells (HSCs) induced by benzene and its metabolites is a key event in bone marrow (BM) depression and leukemogenesis. There are no reports on transcriptome profiles of HSCs following benzene exposure. Here, Smart-seq2 single-cell transcriptome sequencing was used to detect transcriptomic alternations in BM HSCs and peripheral blood HSCs (PBSCs) in male C57B/6 mice exposed to benzene. We found that benzene caused hematotoxicity which was confirmed by routine blood test, pathological examination, and HSCs percentage analysis. A total of 1514 differentially expressed genes (DEGs) in BM HSCs and 1703 DEGs in PBSCs were screened after treatment with benzene. Weighted gene correlation network analysis revealed that pathways in cancer, transcriptional misregulation in cancer, and hematopoietic cell lineage are vital pathways involved in benzene-induced toxicity in BM HSCs, whereas hematopoietic cell lineage and leukocyte transendothelial migration are critical pathways in PBSCs. Of note, there were 164 common DEGs in both HSCs, out of which 53 genes were co-regulated in both types of HSCs. Subsequent pathway analysis of these 53 genes indicated that the most relevant pathways involved neutrophil degranulation and CD93 localized in the core of the network of the 53 genes, which are known to regulate leukemia stem cell self-renewal and quiescence. Our results could enhance our understanding of HSC responses to benzene, facilitate the identification of potential molecular biomarkers and future studies on its mechanism of toxicity toward HSCs.


Asunto(s)
Benceno/toxicidad , Contaminantes Ambientales/toxicidad , Pruebas de Toxicidad , Animales , Apoptosis/genética , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Leucemia , Masculino , Ratones , Neoplasias , Transcriptoma
12.
Environ Toxicol ; 35(10): 1033-1042, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32478940

RESUMEN

Widespread occupational and environmental exposure to benzene is unavoidable and poses a public health threat. Studies of potential interventions to prevent or relieve benzene toxicity are, thus, essential. Research has shown l-carnitine (LC) has beneficial effects against various pathological processes and diseases. LC possesses antioxidant activities and participates in fatty acid oxidation (FAO). In this study, we investigated whether 1,4-benzoquinone (1,4-BQ) affects LC levels and the FAO pathway, as well as analyzed the influence of LC on the cytotoxic effects of 1,4-BQ. We found that 1,4-BQ significantly decreased LC levels and downregulated Cpt1a, Cpt2, Crat, Hadha, Acaa2, and Acadvl mRNA expression in K562 cells. Subsequent assays confirmed that 1,4-BQ decreased cell viability and increased apoptosis and caspase-3, -8, and -9 activities. It also induced obvious oxidative stress and DNA damage, including an increase in the levels of reactive oxygen species and malondialdehyde, tail DNA%, and olive tail moment. Additionally, the mitochondrial membrane potential was significantly reduced. Cotreatment with LC (500 µmol/L) relieved these alterations by reducing oxidative stress and increasing the protein expression levels of Cpt1a and Hadha, particularly in the 20 µmol/L 1,4-BQ group. Thus, our results demonstrate that 1,4-BQ causes cytotoxicity, reduces LC levels, and downregulates the FAO genes. In contrast, LC exhibits protective effects against 1,4-BQ-induced apoptosis and DNA damage by decreasing oxidative stress and promoting the FAO pathway.


Asunto(s)
Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Benzoquinonas/toxicidad , Carnitina/farmacología , Daño del ADN/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Carnitina/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Células K562 , Metabolismo de los Lípidos/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
13.
Artículo en Inglés | MEDLINE | ID: mdl-32024182

RESUMEN

Benzene, a commonly used chemical, has been confirmed to specifically affect the hematopoietic system as well as overall human health. PTP4A3 is overexpressed in leukemia cells and is related to cell proliferation. We previously found that HIF-1alpha was involved in benzene toxicity and PTP4A3 may be the target gene of HIF-1alpha via ChIP-seq. The aim of this study is to confirm the relationship between HIF-1alpha and PTP4A3 in benzene toxicity, as well as the function of PTP4A3 on cell toxicity induced by 1,4-benzoquinone (1,4-BQ). Our results indicate that HIF-1alpha could regulate PTP4A3 with in vivo and in vitro experiments. A cell line with suppressed PTP4A3 was established to investigate the function of PTP4A3 in 1,4-BQ toxicity in vitro. The results revealed that cell proliferation inhibition was more aggravated in PTP4A3 low-expression cells than in the control cells after 1,4-BQ treatment. The relative oxygen species (ROS) significantly increased in cells with inhibited PTP4A3, while the rise was inferior to the control cells at the 20 µM 1,4-BQ group. An increase in DNA damage was seen in PTP4A3 down-regulated cells at the 10 µM 1,4-BQ group, whereas the results reversed at the concentration of 20 µM. Moreover, the apoptosis rate increased higher in down-regulated PTP4A3 cells after 1,4-BQ exposure. In addition, PI3K/AKT pathway was significantly restrained in cells with inhibited PTP4A3 after 1,4-BQ treatment. Our results indicate that HIF-1alpha may regulate PTP4A3 to be involved in benzene toxicity. Inhibition of PTP4A3 could aggravate cell proliferation suppression and apoptosis by regulating PI3K/AKT pathway after 1,4-BQ treatment.


Asunto(s)
Apoptosis , Benceno , Proteínas de Neoplasias , Fosfatidilinositol 3-Quinasas , Proteínas Tirosina Fosfatasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Apoptosis/efectos de los fármacos , Benceno/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Sci Total Environ ; 705: 135879, 2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-31972927

RESUMEN

The gut microbiota comprises a multispecies microbial community and is essential for maintaining health. Benzene is a widespread environmental and occupational pollutant that mainly causes blood and bone marrow abnormalities. However, the effects of benzene on gut microbiota and metabolism have not yet been investigated. In this study, C57BL/6 mice were exposed to 0, 6, 30 and 150 mg/kg benzene by subcutaneous injection for 30 days. We observed that white blood cell levels significantly decreased in the three benzene exposure groups, while red blood cell and hemoglobin levels were only changed remarkably in 30 and 150 mg/kg benzene-treated mice. The results of 16S rRNA sequencing showed that benzene exposure altered the overall structure of the gut microbial communities. In addition, significant enrichments of Actinobacteria (p < .05) at the phylum level and Helicobacter at the genus level were observed in the cecal contents and feces of mice exposed to 150 mg/kg benzene. Moreover, there was a significant negative correlation between Actinobacteria abundance and basic blood indicators, including white blood cell, red blood cell, and hemoglobin levels. Furthermore, according to LC-MS analysis, a total of 42 cecal metabolites were significantly altered by 150 mg/kg benzene. Several metabolic pathways were significantly influenced by benzene exposure, including cysteine and methionine metabolism, porphyrin and chlorophyll metabolism, steroid biosynthesis, aminoacyl-tRNA biosynthesis, and arginine and proline metabolism. In summary, this study demonstrated that benzene exposure causes dysbiosis of the gut microbiota and metabolic disorder in mice.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Animales , Benceno , Hígado , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S
15.
Toxicol In Vitro ; 60: 107-115, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31077745

RESUMEN

Prodigiosin contains a tripyrrole skeleton and shows impressive anticancer potential in multiple cell lines. Numerous studies have been conducted on prodigiosin-induced apoptosis and the related mechanisms. However, few reports have considered the effects of prodigiosin on autophagy and the relationship between apoptosis and autophagy. Here, we examined whether prodigiosin affected apoptosis and autophagy through the extracellular signal-regulated (ERK) signaling pathway in K562 cells, employing cell proliferation, flow cytometry, caspase activity, and western blot analyses. Inhibition of the ERK signaling pathway with PD184352 was conducted to verify the role of this pathway on prodigiosin-mediated processes. Our findings revealed that prodigiosin inhibited the proliferation of K562 cells, increased reactive oxygen species (ROS), induced apoptosis and inhibited autophagy in K562 cells. Additionally, the ROS scavenger, N-Acetyl-L-cysteine (NAC), partially prevented prodigiosin-induced apoptosis but did not reduce prodigiosin-inhibited autophagy in K562 cells. Furthermore, prodigiosin treatment in K562 cells reduced the phosphorylation of c-Jun N-terminal kinases (JNKs) and P38, and activated ERK signaling pathway. When ERK1/2 phosphorylation was blocked by PD184352, prodigiosin-induced apoptosis and the inhibition of autophagy decreased significantly. Taken together, these results demonstrated that the ERK signaling pathway was involved in prodigiosin-induced apoptosis and prodigiosin-inhibited autophagy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Prodigiosina/farmacología , Caspasas/metabolismo , Proliferación Celular/efectos de los fármacos , Humanos , Células K562 , Especies Reactivas de Oxígeno/metabolismo
16.
Toxicol In Vitro ; 55: 18-23, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30448556

RESUMEN

Benzene is an environmental contaminant which causes hematological diseases. Previously, hypoxia inducible factor-1a (HIF-1a) was found to be involved in benzene-induced hematotoxicity. This study aims to explore whether overexpression of HIF-1a in K562 cell line could influence the toxicity caused by 1,4-BQ. HIF-1a overexpression K562 cell line was constructed with a lentiviral vector. Results showed that HIF-1a was significantly elevated in control K562 cells and HIF-1a overexpression cells exposed to 1,4-BQ. Compared with 1,4-BQ exposed control cells, HIF-1a overexpression blocked cell cycle at G2/M phase, remarkably reduced apoptosis and ROS level. And HIF-1a overexpression caused downregulation of Nox4 and upregulation of Bcl-2. In addition, the lactic acid (LD)/pyruvic acid (PA) ratio was significantly higher in HIF-1a overexpression cells than that in control cells at the same 1,4-BQ dose. Furthermore, significant increases in Glut1, Ldha, Pkm2, Pgk1, Pdk1, Pfkl, Pfkfb3 protein levels was also observed in HIF-1a overexpression cells. Overall, our results indicated that HIF-1a overexpression could alleviate ROS and apoptosis caused by 1,4-BQ through targeting Nox4, Bcl-2 and key enzymes in glycolysis.


Asunto(s)
Benzoquinonas/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Glucólisis/efectos de los fármacos , Humanos , Células K562 , NADPH Oxidasa 4/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
17.
Artículo en Inglés | MEDLINE | ID: mdl-30424520

RESUMEN

Benzene is a hematopoietic toxicant, and hematopoietic cells in bone marrow (BM) are one of the main targets for its action, especially hematopoietic stem cells (HSCs). Hypoxia-inducible factor-1α (HIF-1α) is associated with the metabolism and physiological functions of HSCs. We previously found that the mechanism of regulation of HIF-1α is involved in benzene-induced hematopoietic toxicity. In this study, chromatin immunoprecipitation sequencing (ChIP-Seq) technologies were used to analyze the genome-wide binding spectrum of HIF-1α in mouse BM cells, and specific HIF-1α target genes and pathways associated with benzene toxicity were screened and validated. By application of the ChIP-Seq technique, we identified target genes HIF-1α directly binds to and regulates. Forty-two differentially down-regulated genes containing the HIF-1α specific binding site hypoxia response element (HRE) were found, of which 25 genes were with biological function. Moreover, the enrichment analysis of signal pathways indicated that these genes were significantly enriched in the Jak-STAT signaling pathway, Natural killer cell mediated cytotoxicity, the Fc epsilon RI signaling pathway, Pyrimidine metabolism, the T cell receptor signaling pathway, and Transcriptional misregulation in cancer. After verification, 11 genes involved in HSC self-renewal, cell cycle, differentiation, and apoptosis pathways were found to be significantly reduced, and may participate in benzene-induced hematotoxicity. Our study provides a new academic clue for the mechanism of benzene hematotoxicity.


Asunto(s)
Benceno/metabolismo , Benceno/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Células Madre Hematopoyéticas/efectos de los fármacos , Hemolíticos/metabolismo , Hemolíticos/toxicidad , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Animales , Células de la Médula Ósea/metabolismo , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/efectos de los fármacos , Ratones , Modelos Animales , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA