Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
FEBS J ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37467060

RESUMEN

Interleukin-6 (IL-6)-type cytokines not only have key immunomodulatory functions that affect the pathogenesis of diseases such as autoimmune diseases, chronic inflammatory conditions, and cancer, but also fulfill important homeostatic tasks. Even though the pro-inflammatory arm has hindered the development of therapeutics based on natural-like IL-6-type cytokines to date, current synthetic trends might pave the way to overcome these limitations and eventually lead to immune-inert designer cytokines to aid type 2 diabetes and brain injuries. Those synthetic biology approaches include mutations, fusion proteins, and inter-cytokine swapping, and resulted in IL-6-type cytokines with altered receptor affinities, extended target cell profiles, and targeting of non-natural cytokine receptor complexes. Here, we survey synthetic cytokine developments within the IL-6-type cytokine family and discuss potential clinical applications.

2.
Front Cell Dev Biol ; 10: 987754, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36274845

RESUMEN

Stress-activated MAP kinase-interacting protein 1 (SIN1) is a central member of the mTORC2 complex that contains an N-terminal domain (NTD), a conserved region in the middle (CRIM), a RAS-binding domain (RBD), and a pleckstrin homology domain. Recent studies provided valuable structural and functional insights into the interactions of SIN1 and the RAS-binding domain of RAS proteins. However, the mechanism for a reciprocal interaction of the RBD-PH tandem with RAS proteins and the membrane as an upstream event to spatiotemporal mTORC2 regulation is not clear. The biochemical assays in this study led to the following results: 1) all classical RAS paralogs, including HRAS, KRAS4A, KRAS4B, and NRAS, can bind to SIN1-RBD in biophysical and SIN1 full length (FL) in cell biology experiments; 2) the SIN1-PH domain modulates interactions with various types of membrane phosphoinositides and constantly maintains a pool of SIN1 at the membrane; and 3) a KRAS4A-dependent decrease in membrane binding of the SIN1-RBD-PH tandem was observed, suggesting for the first time a mechanistic influence of KRAS4A on SIN1 membrane association. Our study strengthens the current mechanistic understanding of SIN1-RAS interaction and suggests membrane interaction as a key event in the control of mTORC2-dependent and mTORC2-independent SIN1 function.

3.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012107

RESUMEN

The IQ motif-containing GTPase-activating protein (IQGAP) family composes of three highly-related and evolutionarily conserved paralogs (IQGAP1, IQGAP2 and IQGAP3), which fine tune as scaffolding proteins numerous fundamental cellular processes. IQGAP1 is described as an effector of CDC42, although its effector function yet re-mains unclear. Biophysical, biochemical and molecular dynamic simulation studies have proposed that IQGAP RASGAP-related domains (GRDs) bind to the switch regions and the insert helix of CDC42 in a GTP-dependent manner. Our kinetic and equilibrium studies have shown that IQGAP1 GRD binds, in contrast to its C-terminal 794 amino acids (called C794), CDC42 in a nucleotide-independent manner indicating a binding outside the switch regions. To resolve this discrepancy and move beyond the one-sided view of GRD, we carried out affinity measurements and a systematic mutational analysis of the interfacing residues between GRD and CDC42 based on the crystal structure of the IQGAP2 GRD-CDC42Q61L GTP complex. We determined a 100-fold lower affinity of the GRD1 of IQGAP1 and of GRD2 of IQGAP2 for CDC42 mGppNHp in comparison to C794/C795 proteins. Moreover, partial and major mutation of CDC42 switch regions substantially affected C794/C795 binding but only a little GRD1 and remarkably not at all the GRD2 binding. However, we clearly showed that GRD2 contributes to the overall affinity of C795 by using a 11 amino acid mutated GRD variant. Furthermore, the GRD1 binding to the CDC42 was abolished using specific point mutations within the insert helix of CDC42 clearly supporting the notion that CDC42 binding site(s) of IQGAP GRD lies outside the switch regions among others in the insert helix. Collectively, this study provides further evidence for a mechanistic framework model that is based on a multi-step binding process, in which IQGAP GRD might act as a 'scaffolding domain' by binding CDC42 irrespective of its nucleotide-bound forms, followed by other IQGAP domains downstream of GRD that act as an effector domain and is in charge for a GTP-dependent interaction with CDC42.


Asunto(s)
Proteína de Unión al GTP cdc42 , Proteínas Activadoras de ras GTPasa , Sitios de Unión , Proteínas Activadoras de GTPasa/metabolismo , Guanosina Trifosfato/metabolismo , Nucleótidos/metabolismo , Unión Proteica , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
4.
Cells ; 11(3)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35159317

RESUMEN

Embryonic stem cell-expressed Ras (ERas) is an atypical constitutively active member of the Ras family and controls distinct signaling pathways, which are critical, for instance, for the maintenance of quiescent hepatic stellate cells (HSCs). Unlike classical Ras paralogs, ERas has a unique N-terminal extension (Nex) with as yet unknown function. In this study, we employed affinity pull-down and quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses and identified 76 novel binding proteins for human and rat ERas Nex peptides, localized in different subcellular compartments and involved in various cellular processes. One of the identified Nex-binding proteins is the nonmitochondrial, cytosolic arginase 1 (ARG1), a key enzyme of the urea cycle and involved in the de novo synthesis of polyamines, such as spermidine and spermine. Here, we show, for the first time, a high-affinity interaction between ERas Nex and purified ARG1 as well as their subcellular colocalization. The inhibition of ARG1 activity strikingly accelerates the activation of HSCs ex vivo, suggesting a central role of ARG1 activity in the maintenance of HSC quiescence.


Asunto(s)
Arginasa , Células Estrelladas Hepáticas , Proteína Oncogénica p21(ras) , Animales , Arginasa/metabolismo , Cromatografía Liquida , Células Madre Embrionarias/metabolismo , Células Estrelladas Hepáticas/metabolismo , Humanos , Proteína Oncogénica p21(ras)/metabolismo , Ratas , Espectrometría de Masas en Tándem
5.
Biomolecules ; 11(6)2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208655

RESUMEN

The RTK-RAS-MAPK axis is one of the most extensively studied signaling cascades and is related to the development of both cancers and RASopathies. In the last 30 years, many ideas and approaches have emerged for directly targeting constituent members of this cascade, predominantly in the context of cancer treatment. These approaches are still insufficient due to undesirable drug toxicity, resistance, and low efficacy. Significant advances have been made in understanding the spatiotemporal features of the constituent members of the RTK-RAS-MAPK axis, which are linked and modulated by many accessory proteins. Given that the majority of such modulators are now emerging as attractive therapeutic targets, a very small number of accessory inhibitors have yet to be discovered.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/efectos de los fármacos , Proteínas Tirosina Quinasas Receptoras/efectos de los fármacos , Proteínas ras/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo
6.
Commun Biol ; 4(1): 696, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103645

RESUMEN

Health and disease are directly related to the RTK-RAS-MAPK signalling cascade. After more than three decades of intensive research, understanding its spatiotemporal features is afflicted with major conceptual shortcomings. Here we consider how the compilation of a vast array of accessory proteins may resolve some parts of the puzzles in this field, as they safeguard the strength, efficiency and specificity of signal transduction. Targeting such modulators, rather than the constituent components of the RTK-RAS-MAPK signalling cascade may attenuate rather than inhibit disease-relevant signalling pathways.


Asunto(s)
Proteínas Quinasas Activadas por Mitógenos/metabolismo , Transducción de Señal , Proteínas ras/metabolismo , Animales , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA