Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Cell Chem Biol ; 31(5): 973-988.e4, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38335967

RESUMEN

The (poly)pharmacology of drug metabolites is seldom comprehensively characterized in drug discovery. However, some drug metabolites can reach high plasma concentrations and display in vivo activity. Here, we use computational and experimental methods to comprehensively characterize the kinase polypharmacology of M324, the major metabolite of the PARP1 inhibitor rucaparib. We demonstrate that M324 displays unique PLK2 inhibition at clinical concentrations. This kinase activity could have implications for the efficacy and safety of rucaparib and therefore warrants further clinical investigation. Importantly, we identify synergy between the drug and the metabolite in prostate cancer models and a complete reduction of α-synuclein accumulation in Parkinson's disease models. These activities could be harnessed in the clinic or open new drug discovery opportunities. The study reported here highlights the importance of characterizing the activity of drug metabolites to comprehensively understand drug response in the clinic and exploit our current drug arsenal in precision medicine.


Asunto(s)
Indoles , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Inhibidores de Poli(ADP-Ribosa) Polimerasas/metabolismo , Indoles/farmacología , Indoles/química , Indoles/metabolismo , Animales , Masculino , Ratones , Sinergismo Farmacológico , Línea Celular Tumoral , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
2.
Cancer Discov ; 12(12): 2930-2953, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36108220

RESUMEN

Systematically investigating the scores of genes mutated in cancer and discerning disease drivers from inconsequential bystanders is a prerequisite for precision medicine but remains challenging. Here, we developed a somatic CRISPR/Cas9 mutagenesis screen to study 215 recurrent "long-tail" breast cancer genes, which revealed epigenetic regulation as a major tumor-suppressive mechanism. We report that components of the BAP1 and COMPASS-like complexes, including KMT2C/D, KDM6A, BAP1, and ASXL1/2 ("EpiDrivers"), cooperate with PIK3CAH1047R to transform mouse and human breast epithelial cells. Mechanistically, we find that activation of PIK3CAH1047R and concomitant EpiDriver loss triggered an alveolar-like lineage conversion of basal mammary epithelial cells and accelerated formation of luminal-like tumors, suggesting a basal origin for luminal tumors. EpiDriver mutations are found in ∼39% of human breast cancers, and ∼50% of ductal carcinoma in situ express casein, suggesting that lineage infidelity and alveogenic mimicry may significantly contribute to early steps of breast cancer etiology. SIGNIFICANCE: Infrequently mutated genes comprise most of the mutational burden in breast tumors but are poorly understood. In vivo CRISPR screening identified functional tumor suppressors that converged on epigenetic regulation. Loss of epigenetic regulators accelerated tumorigenesis and revealed lineage infidelity and aberrant expression of alveogenesis genes as potential early events in tumorigenesis. This article is highlighted in the In This Issue feature, p. 2711.


Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Humanos , Ratones , Animales , Femenino , Neoplasias de la Mama/patología , Epigénesis Genética , Recurrencia Local de Neoplasia/genética , Carcinoma Intraductal no Infiltrante/genética , Transformación Celular Neoplásica/genética
3.
Mol Cancer Ther ; 21(7): 1246-1258, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35511749

RESUMEN

Malignant peripheral nerve sheath tumors (MPNST) are soft-tissue sarcomas that are the leading cause of mortality in patients with Neurofibromatosis type 1 (NF1). Single chemotherapeutic agents have shown response rates ranging from 18% to 44% in clinical trials, so there is still a high medical need to identify chemotherapeutic combination treatments that improve clinical prognosis and outcome. We screened a collection of compounds from the NCATS Mechanism Interrogation PlatE (MIPE) library in three MPNST cell lines, using cell viability and apoptosis assays. We then tested whether compounds that were active as single agents were synergistic when screened as pairwise combinations. Synergistic combinations in vitro were further evaluated in patient-derived orthotopic xenograft/orthoxenograft (PDOX) athymic models engrafted with primary MPNST matching with their paired primary-derived cell line where synergism was observed. The high-throughput screening identified 21 synergistic combinations, from which four exhibited potent synergies in a broad panel of MPNST cell lines. One of the combinations, MK-1775 with Doxorubicin, significantly reduced tumor growth in a sporadic PDOX model (MPNST-SP-01; sevenfold) and in an NF1-PDOX model (MPNST-NF1-09; fourfold) and presented greater effects in TP53 mutated MPNST cell lines. The other three combinations, all involving Panobinostat (combined with NVP-BGT226, Torin 2, or Carfilzomib), did not reduce the tumor volume in vivo at noncytotoxic doses. Our results support the utility of our screening platform of in vitro and in vivo models to explore new therapeutic approaches for MPNSTs and identified that combination MK-1775 with Doxorubicin could be a good pharmacologic option for the treatment of these tumors.


Asunto(s)
Neoplasias de la Vaina del Nervio , Neurofibromatosis 1 , Neurofibrosarcoma , Línea Celular Tumoral , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias de la Vaina del Nervio/tratamiento farmacológico , Neoplasias de la Vaina del Nervio/genética , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/patología , Neurofibromatosis 1/terapia
4.
Nat Commun ; 13(1): 2200, 2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459234

RESUMEN

Preneoplastic mammary tissues from human female BRCA1 mutation carriers, or Brca1-mutant mice, display unexplained abnormalities in luminal differentiation. We now study the division characteristics of human mammary cells purified from female BRCA1 mutation carriers or non-carrier donors. We show primary BRCA1 mutant/+ cells exhibit defective BRCA1 localization, high radiosensitivity and an accelerated entry into cell division, but fail to orient their cell division axis. We also analyse 15 genetically-edited BRCA1 mutant/+ human mammary cell-lines and find that cells carrying pathogenic BRCA1 mutations acquire an analogous defect in their division axis accompanied by deficient expression of features of mature luminal cells. Importantly, these alterations are independent of accumulated DNA damage, and specifically dependent on elevated PLK1 activity induced by reduced BRCA1 function. This essential PLK1-mediated role of BRCA1 in controlling the cell division axis provides insight into the phenotypes expressed during BRCA1 tumorigenesis.


Asunto(s)
Proteína BRCA1 , Neoplasias de la Mama , Animales , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Mama/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/genética , Transformación Celular Neoplásica/genética , Daño del ADN , Femenino , Humanos , Ratones , Mutación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Quinasa Tipo Polo 1
5.
Nature ; 599(7886): 673-678, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34732895

RESUMEN

Immune exclusion predicts poor patient outcomes in multiple malignancies, including triple-negative breast cancer (TNBC)1. The extracellular matrix (ECM) contributes to immune exclusion2. However, strategies to reduce ECM abundance are largely ineffective or generate undesired outcomes3,4. Here we show that discoidin domain receptor 1 (DDR1), a collagen receptor with tyrosine kinase activity5, instigates immune exclusion by promoting collagen fibre alignment. Ablation of Ddr1 in tumours promotes the intratumoral penetration of T cells and obliterates tumour growth in mouse models of TNBC. Supporting this finding, in human TNBC the expression of DDR1 negatively correlates with the intratumoral abundance of anti-tumour T cells. The DDR1 extracellular domain (DDR1-ECD), but not its intracellular kinase domain, is required for immune exclusion. Membrane-untethered DDR1-ECD is sufficient to rescue the growth of Ddr1-knockout tumours in immunocompetent hosts. Mechanistically, the binding of DDR1-ECD to collagen enforces aligned collagen fibres and obstructs immune infiltration. ECD-neutralizing antibodies disrupt collagen fibre alignment, mitigate immune exclusion and inhibit tumour growth in immunocompetent hosts. Together, our findings identify a mechanism for immune exclusion and suggest an immunotherapeutic target for increasing immune accessibility through reconfiguration of the tumour ECM.


Asunto(s)
Colágeno/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/metabolismo , Escape del Tumor , Animales , Línea Celular Tumoral , Receptor con Dominio Discoidina 1/antagonistas & inhibidores , Receptor con Dominio Discoidina 1/deficiencia , Receptor con Dominio Discoidina 1/genética , Modelos Animales de Enfermedad , Matriz Extracelular/inmunología , Femenino , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Inmunocompetencia/inmunología , Inmunoterapia , Ratones , Linfocitos T/citología , Linfocitos T/inmunología , Neoplasias de la Mama Triple Negativas/terapia
6.
Sci Rep ; 11(1): 10171, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33986388

RESUMEN

There are few published data on long-term treatment with sirolimus in lymphangioleiomyomatosis (LAM). The objective of this study was to describe the long-term effect of sirolimus in a series of LAM patients followed up in a referral centre, focusing on pulmonary function. We retrospectively reviewed a series of 48 patients with LAM diagnosed, followed up and treated with sirolimus in a single centre. Response to sirolimus was evaluated at 1 and 5 years. A negative sirolimus response was defined as an FEV1 decline greater than - 75 ml/year. A mixed-effects model was used to estimate the longitudinal changes in FEV1 (average slope), both as absolute (ml/year) and as predicted values (%predicted/year). From a total of 48 patients, 9 patients underwent lung transplantation and 4 died during the study. Mean (95% CI) FEV1 slope over 5 years was - 0.14 (- 26.13 to 25.85) ml/year in the whole LAM group, 42.55 (14.87 to 70.22) ml/year in the responder group, - 54.00 (- 71.60 to - 36.39) ml/year in the partial responder group and - 84.19 (- 113.5 to - 54.0) ml/year in the non-responder group. After 5 years of sirolimus treatment 59% had a positive response, 30% had a partial response and 11% had a negative response. Our study found that sirolimus treatment had a positive long-term effect on most LAM patients.


Asunto(s)
Antibióticos Antineoplásicos/uso terapéutico , Linfangioleiomiomatosis/tratamiento farmacológico , Sirolimus/uso terapéutico , Adulto , Angiomiolipoma/complicaciones , Angiomiolipoma/tratamiento farmacológico , Antibióticos Antineoplásicos/efectos adversos , Femenino , Estudios de Seguimiento , Volumen Espiratorio Forzado/efectos de los fármacos , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/complicaciones , Neoplasias Pulmonares/tratamiento farmacológico , Linfangioleiomiomatosis/complicaciones , Persona de Mediana Edad , Uso Fuera de lo Indicado , Estudios Retrospectivos , Sirolimus/efectos adversos , Centros de Atención Terciaria , Tiempo , Resultado del Tratamiento
7.
Cancer Res ; 79(16): 4258-4270, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31213465

RESUMEN

Taxanes are the mainstay of treatment in triple-negative breast cancer (TNBC), with de novo and acquired resistance limiting patient's survival. To investigate the genetic basis of docetaxel resistance in TNBC, exome sequencing was performed on matched TNBC patient-derived xenografts (PDX) sensitive to docetaxel and their counterparts that developed resistance in vivo upon continuous drug exposure. Most mutations, small insertions/deletions, and copy number alterations detected in the initial TNBC human metastatic samples were maintained after serial passages in mice and emergence of resistance. We identified a chromosomal amplification of chr12p in a human BRCA1-mutated metastatic sample and the derived chemoresistant PDX, but not in the matched docetaxel-sensitive PDX tumor. Chr12p amplification was validated in a second pair of docetaxel-sensitive/resistant BRCA1-mutated PDXs and after short-term docetaxel treatment in several TNBC/BRCA1-mutated PDXs and cell lines, as well as during metastatic recurrence in a patient with BRCA1-mutated breast cancer who had progressed on docetaxel treatment. Analysis of clinical data indicates an association between chr12p amplification and patients with TNBC/basal-like breast cancer, a BRCA1 mutational signature, and poor survival after chemotherapy. Detection of chr12p amplification in a cohort of TNBC PDX models was associated with an improved response to carboplatin. Our findings reveal tumor clonal dynamics during chemotherapy treatments and suggest that a preexisting population harboring chr12p amplification is associated with the emergence of docetaxel resistance and carboplatin responsiveness in TNBC/BRCA1-mutated tumors. SIGNIFICANCE: Chr12p copy number gains indicate rapid emergence of resistance to docetaxel and increased sensitivity to carboplatin, therefore sequential docetaxel/carboplatin treatment could improve survival in TNBC/BRCA1 patients. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/79/16/4258/F1.large.jpg.


Asunto(s)
Carboplatino/farmacología , Cromosomas Humanos Par 12 , Docetaxel/farmacología , Resistencia a Antineoplásicos/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Animales , Proteína BRCA1/genética , Línea Celular Tumoral , Exoma , Femenino , Humanos , Ratones , Mutación , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/mortalidad , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Dis Model Mech ; 11(5)2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29666142

RESUMEN

Understanding the mechanisms of cancer therapeutic resistance is fundamental to improving cancer care. There is clear benefit from chemotherapy in different breast cancer settings; however, knowledge of the mutations and genes that mediate resistance is incomplete. In this study, by modeling chemoresistance in patient-derived xenografts (PDXs), we show that adaptation to therapy is genetically complex and identify that loss of transcription factor 4 (TCF4; also known as ITF2) is associated with this process. A triple-negative BRCA1-mutated PDX was used to study the genetics of chemoresistance. The PDX was treated in parallel with four chemotherapies for five iterative cycles. Exome sequencing identified few genes with de novo or enriched mutations in common among the different therapies, whereas many common depleted mutations/genes were observed. Analysis of somatic mutations from The Cancer Genome Atlas (TCGA) supported the prognostic relevance of the identified genes. A mutation in TCF4 was found de novo in all treatments, and analysis of drug sensitivity profiles across cancer cell lines supported the link to chemoresistance. Loss of TCF4 conferred chemoresistance in breast cancer cell models, possibly by altering cell cycle regulation. Targeted sequencing in chemoresistant tumors identified an intronic variant of TCF4 that may represent an expression quantitative trait locus associated with relapse outcome in TCGA. Immunohistochemical studies suggest a common loss of nuclear TCF4 expression post-chemotherapy. Together, these results from tumor xenograft modeling depict a link between altered TCF4 expression and breast cancer chemoresistance.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Resistencia a Antineoplásicos , Factor de Transcripción 4/deficiencia , Adaptación Fisiológica , Adulto , Animales , Secuencia de Bases , Neoplasias de la Mama/tratamiento farmacológico , Ciclo Celular/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Femenino , Heterogeneidad Genética , Humanos , Ratones , Mutación/genética , Pronóstico , Factor de Transcripción 4/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Mol Cancer Res ; 16(1): 16-31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28993511

RESUMEN

Cell-cycle progression and the acquisition of a migratory phenotype are hallmarks of human carcinoma cells that are perceived as independent processes but may be interconnected by molecular pathways that control microtubule nucleation at centrosomes. Here, cell-cycle progression dramatically impacts the engraftment kinetics of 4T1-luciferase2 breast cancer cells in immunocompetent BALB/c or immunocompromised NOD-SCID gamma (NSG) mice. Multiparameter imaging of wound closure assays was used to track cell-cycle progression, cell migration, and associated phenotypes in epithelial cells or carcinoma cells expressing a fluorescence ubiquitin cell-cycle indicator. Cell migration occurred with an elevated velocity and directionality during the S-G2-phase of the cell cycle, and cells in this phase possess front-polarized centrosomes with augmented microtubule nucleation capacity. Inhibition of Aurora kinase-A (AURKA/Aurora-A) dampens these phenotypes without altering cell-cycle progression. During G2-phase, the level of phosphorylated Aurora-A at centrosomes is reduced in hyaluronan-mediated motility receptor (HMMR)-silenced cells as is the nuclear transport of TPX2, an Aurora-A-activating protein. TPX2 nuclear transport depends upon HMMR-T703, which releases TPX2 from a complex with importin-α (KPNA2) at the nuclear envelope. Finally, the abundance of phosphorylated HMMR-T703, a substrate for Aurora-A, predicts breast cancer-specific survival and relapse-free survival in patients with estrogen receptor (ER)-negative (n = 941), triple-negative (TNBC) phenotype (n = 538), or basal-like subtype (n = 293) breast cancers, but not in those patients with ER-positive breast cancer (n = 2,218). Together, these data demonstrate an Aurora-A/TPX2/HMMR molecular axis that intersects cell-cycle progression and cell migration.Implications: Tumor cell engraftment, migration, and cell-cycle progression share common regulation of the microtubule cytoskeleton through the Aurora-A/TPX2/HMMR axis, which has the potential to influence the survival of patients with ER-negative breast tumors. Mol Cancer Res; 16(1); 16-31. ©2017 AACR.


Asunto(s)
Aurora Quinasa A/genética , Proteínas de Ciclo Celular/metabolismo , Animales , Aurora Quinasa A/metabolismo , Femenino , Humanos , Ratones , Transfección
12.
Oncotarget ; 8(20): 32461-32475, 2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28427147

RESUMEN

BRCA1 deficiency may perturb the differentiation hierarchy present in the normal mammary gland and is associated with the genesis of breast cancers that are genomically unstable and typically display a basal-like transcriptome. Oriented cell division is a mechanism known to regulate cell fates and to restrict tumor formation. We now show that the cell division axis is altered following shRNA-mediated BRCA1 depletion in immortalized but non-tumorigenic, or freshly isolated normal human mammary cells with graded consequences in progeny cells that include aneuploidy, perturbation of cell polarity in spheroid cultures, and a selective loss of cells with luminal features. BRCA1 depletion stabilizes HMMR abundance and disrupts cortical asymmetry of NUMA-dynein complexes in dividing cells such that polarity cues provided by cell-matrix adhesions were not able to orient division. We also show that immortalized mammary cells carrying a mutant BRCA1 allele (BRCA1 185delAG/+) reproduce many of these effects but in this model, oriented divisions were maintained through cues provided by CDH1+ cell-cell junctions. These findings reveal a previously unknown effect of BRCA1 suppression on mechanisms that regulate the cell division axis in proliferating, non-transformed human mammary epithelial cells and consequent downstream effects on the mitotic integrity and phenotype control of their progeny.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Proteína BRCA1/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diferenciación Celular/fisiología , División Celular/fisiología , Células Epiteliales/patología , Femenino , Células HeLa , Humanos , Fenotipo , Ploidias
13.
Cancer Res ; 76(19): 5857-5869, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27480274

RESUMEN

RANK expression is associated with poor prognosis in breast cancer even though its therapeutic potential remains unknown. RANKL and its receptor RANK are downstream effectors of the progesterone signaling pathway. However, RANK expression is enriched in hormone receptor negative adenocarcinomas, suggesting additional roles for RANK signaling beyond its hormone-dependent function. Here, to explore the role of RANK signaling once tumors have developed, we use the mouse mammary tumor virus-Polyoma Middle T (MMTV-PyMT), which mimics RANK and RANKL expression patterns seen in human breast adenocarcinomas. Complementary genetic and pharmacologic approaches demonstrate that therapeutic inhibition of RANK signaling drastically reduces the cancer stem cell pool, decreases tumor and metastasis initiation, and enhances sensitivity to chemotherapy. Mechanistically, genome-wide expression analyses show that anti-RANKL therapy promotes lactogenic differentiation of tumor cells. Moreover, RANK signaling in tumor cells negatively regulates the expression of Ap2 transcription factors, and enhances the Wnt agonist Rspo1 and the Sca1-population, enriched in tumor-initiating cells. In addition, we found that expression of TFAP2B and the RANK inhibitor, OPG, in human breast cancer correlate and are associated with relapse-free tumors. These results support the use of RANKL inhibitors to reduce recurrence and metastasis in breast cancer patients based on its ability to induce tumor cell differentiation. Cancer Res; 76(19); 5857-69. ©2016 AACR.


Asunto(s)
Neoplasias Mamarias Experimentales/prevención & control , Recurrencia Local de Neoplasia/prevención & control , Receptor Activador del Factor Nuclear kappa-B/antagonistas & inhibidores , Transducción de Señal/fisiología , Animales , Apoptosis/efectos de los fármacos , Ataxina-1/análisis , Diferenciación Celular/efectos de los fármacos , Docetaxel , Femenino , Humanos , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Virus del Tumor Mamario del Ratón , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/efectos de los fármacos , Ligando RANK/antagonistas & inhibidores , Ligando RANK/farmacología , Receptor Activador del Factor Nuclear kappa-B/fisiología , Taxoides/farmacología , Factor de Transcripción AP-2/fisiología
14.
Oncotarget ; 7(35): 56295-56308, 2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27462779

RESUMEN

Around, 30-40% of HER2-positive breast cancers do not show substantial clinical benefit from the targeted therapy and, thus, the mechanisms underlying resistance remain partially unknown. Interestingly, ERBB2 is frequently co-amplified and co-expressed with neighbour genes that may play a relevant role in this cancer subtype. Here, using an in silico analysis of data from 2,096 breast tumours, we reveal a significant correlation between Gasdermin B (GSDMB) gene (located 175 kilo bases distal from ERBB2) expression and the pathological and clinical parameters of poor prognosis in HER2-positive breast cancer. Next, the analysis of three independent cohorts (totalizing 286 tumours) showed that approximately 65% of the HER2-positive cases have GSDMB gene amplification and protein over-expression. Moreover, GSDMB expression was also linked to poor therapeutic responses in terms of lower relapse free survival and pathologic complete response as well as positive lymph node status and the development of distant metastasis under neoadjuvant and adjuvant treatment settings, respectively. Importantly, GSDMB expression promotes survival to trastuzumab in different HER2-positive breast carcinoma cells, and is associated with trastuzumab resistance phenotype in vivo in Patient Derived Xenografts. In summary, our data identifies the ERBB2 co-amplified and co-expressed gene GSDMB as a critical determinant of poor prognosis and therapeutic response in HER2-positive breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Neoplasias/genética , Recurrencia Local de Neoplasia/genética , Receptor ErbB-2/antagonistas & inhibidores , Adulto , Anciano , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Carcinoma Ductal de Mama/mortalidad , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/terapia , Quimioterapia Adyuvante , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos , Femenino , Estudios de Seguimiento , Amplificación de Genes , Humanos , Metástasis Linfática , Ratones , Ratones Desnudos , Persona de Mediana Edad , Terapia Neoadyuvante , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Pronóstico , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Genome Res ; 26(6): 732-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197215

RESUMEN

Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Transcriptoma , Secuencias de Aminoácidos , Sitios de Unión , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Mutación , Neoplasias/metabolismo , Factores de Empalme de ARN/fisiología
16.
Breast Cancer Res Treat ; 156(1): 195-201, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26951504

RESUMEN

Molecular evidence has linked the pathophysiology of lymphangioleiomyomatosis (LAM) to that of metastatic breast cancer. Following on this observation, we assessed the association between LAM and subsequent breast cancer. An epidemiological study was carried out using three LAM country cohorts, from Japan, Spain, and the United Kingdom. The number of incident breast cancer cases observed in these cohorts was compared with the number expected on the basis of the country-specific incidence rates for the period 2000-2014. Immunohistochemical studies and exome sequence analysis were performed in two and one tumors, respectively. All cohorts revealed breast cancer standardized incidence ratios (SIRs) ≥ 2.25. The combined analysis of all cases or restricted to pre-menopausal age groups revealed significantly higher incidence of breast cancer: SIR = 2.81, 95 % confidence interval (CI) = 1.32-5.57, P = 0.009; and SIR = 4.88, 95 % CI = 2.29-9.99, P = 0.0007, respectively. Immunohistochemical analyses showed positivity for known markers of lung metastatic potential. This study suggests the existence of increased breast cancer risk among LAM patients. Prospective studies may be warranted to corroborate this result, which may be particularly relevant for pre-menopausal women with LAM.


Asunto(s)
Neoplasias de la Mama/epidemiología , Linfangioleiomiomatosis/complicaciones , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Incidencia , Japón/epidemiología , Linfangioleiomiomatosis/genética , Linfangioleiomiomatosis/metabolismo , Metástasis de la Neoplasia , Análisis de Secuencia de ADN , España/epidemiología , Reino Unido/epidemiología
17.
Cancer Res ; 76(5): 1245-59, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719534

RESUMEN

Cancer stem-like cells (CSC) play key roles in long-term tumor propagation and metastasis, but their dynamics during disease progression are not understood. Tumor relapse in patients with initially excised skin squamous cell carcinomas (SCC) is characterized by increased metastatic potential, and SCC progression is associated with an expansion of CSC. Here, we used genetically and chemically-induced mouse models of skin SCC to investigate the signaling pathways contributing to CSC function during disease progression. We found that CSC regulatory mechanisms change in advanced SCC, correlating with aggressive tumor growth and enhanced metastasis. ß-Catenin and EGFR signaling, induced in early SCC CSC, were downregulated in advanced SCC. Instead, autocrine FGFR1 and PDGFRα signaling, which have not been previously associated with skin SCC CSC, were upregulated in late CSC and promoted tumor growth and metastasis, respectively. Finally, high-grade and recurrent human skin SCC recapitulated the signaling changes observed in advanced mouse SCC. Collectively, our findings suggest a stage-specific switch in CSC regulation during disease progression that could be therapeutically exploited by targeting the PDGFR and FGFR1 pathways to block relapse and metastasis of advanced human skin SCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Células Madre Neoplásicas/fisiología , Transducción de Señal/fisiología , Neoplasias Cutáneas/patología , Animales , Carcinoma de Células Escamosas/secundario , Linaje de la Célula , Proliferación Celular , Progresión de la Enfermedad , Receptores ErbB/fisiología , Humanos , Ratones , Estadificación de Neoplasias , Factor de Crecimiento Derivado de Plaquetas/fisiología
18.
Stem Cells ; 34(4): 1027-39, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26695351

RESUMEN

Prolactin and progesterone both orchestrate the proliferation and differentiation of the mammary gland during gestation. Differentiation of milk secreting alveoli depends on the presence of prolactin receptor, the downstream Jak2-Stat5 pathway and the transcription factor Elf5. A strict regulation of Rank signaling is essential for the differentiation of the mammary gland and in particular for alveolar commitment. Impaired alveologenesis and lactation failure are observed in both, knockout and Rank overexpressing mice; however, the underlying molecular mechanism responsible for these phenotypes remains largely unknown. Using genome-wide expression analyses and functional studies, we show here that Rankl (RL) exposure leads to impaired secretory differentiation of alveolar cells not only in MMTV-RANK but also in wild-type (WT) mammary acini. Conversely, pharmacological blockage of Rank signaling at midgestation in WT mice leads to precocious and exacerbated lactogenesis. Mechanistically, RL negatively regulates Stat5 phosphorylation and Elf5 expression at the onset of lactogenesis. Continuous RL exposure leads to the expansion of basal and bipotent cells in WT and MMTV-RANK acini. Overall, we demonstrate that enhanced Rank signaling impairs secretory differentiation during pregnancy by inhibition of the prolactin/p-Stat5 pathway.


Asunto(s)
Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Prolactina/genética , Ligando RANK/genética , Factor de Transcripción STAT5/genética , Factores de Transcripción/genética , Animales , Proliferación Celular/genética , Proteínas de Unión al ADN/biosíntesis , Femenino , Regulación del Desarrollo de la Expresión Génica , Janus Quinasa 2/biosíntesis , Janus Quinasa 2/genética , Lactancia/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Noqueados , Embarazo , Progesterona/genética , Progesterona/metabolismo , Prolactina/metabolismo , Ligando RANK/biosíntesis , Factor de Transcripción STAT5/biosíntesis , Transducción de Señal , Factores de Transcripción/biosíntesis
19.
PLoS One ; 10(7): e0132546, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26167915

RESUMEN

Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM.


Asunto(s)
Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Neoplasias Pulmonares/sangre , Linfangioleiomiomatosis/sangre , Células Madre Neoplásicas/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Perfilación de la Expresión Génica , Humanos , Neoplasias Pulmonares/secundario , Linfangioleiomiomatosis/patología , Metástasis de la Neoplasia , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética
20.
Gastroenterology ; 149(3): 563-6, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26052075

RESUMEN

Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.


Asunto(s)
Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación del ADN/genética , Exodesoxirribonucleasas/genética , Mutación de Línea Germinal , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Preescolar , Neoplasias Colorrectales Hereditarias sin Poliposis/enzimología , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Endodesoxirribonucleasas , Exodesoxirribonucleasas/metabolismo , Femenino , Predisposición Genética a la Enfermedad , Células HEK293 , Herencia , Humanos , Masculino , Persona de Mediana Edad , Enzimas Multifuncionales , Linaje , Fenotipo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA