Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Front Mol Neurosci ; 9: 153, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28082866

RESUMEN

Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed during spaceflights, allowing us to understand how a long-term physical constraint can condition the mammalian physiology. It is known that mice, placed in classical cages and maintained during 21 days in a centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity, and/or stress. Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-exposed mice. Corticosterone is known to modify neuronal activity during memory processes. Although learning and memory performances cannot be assessed during the centrifugation, literature largely described a large panel of proteins (channels, second messengers, transcription factors, structural proteins) which expressions are modified during memory processing. Thus, we used the Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days, and (3) aged mice because aging could be characterized by a decrease of hippocampus functions and memory impairment. Our results suggest that hypergravity stress induced by corticosterone administration and aging modulate the expression of genes in the hippocampus. However, the modulations of the transcriptome observed in these conditions are not identical. Hypergravity affects per-se the hippocampus transcriptome and probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more similar to acute injection than chronic diffusion of corticosterone or aging.

2.
Pharmacol Res Perspect ; 3(1): e00108, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25692025

RESUMEN

The peptide welding technology (PWT) is a novel chemical strategy that allows the synthesis of multibranched peptides with high yield, purity, and reproducibility. With this approach, a tetrabranched derivative of neuropeptide S (NPS) has been synthesized and pharmacologically characterized. The in vitro activity of PWT1-NPS has been studied in a calcium mobilization assay. In vivo, PWT1-NPS has been investigated in the locomotor activity (LA) and recovery of the righting reflex (RR) tests. In calcium mobilization studies, PWT1-NPS behaved as full agonist at the mouse NPS receptor (NPSR) being threefold more potent than NPS. The selective NPSR antagonists [ (t) Bu-D-Gly(5)]NPS and SHA 68 displayed similar potency values against NPS and PWT1-NPS. In vivo, both NPS (1-100 pmol, i.c.v.) and PWT1-NPS (0.1-100 pmol, i.c.v.) stimulated mouse LA, with PWT1-NPS showing higher potency than NPS. In the RR assay, NPS (100 pmol, i.c.v.) was able to reduce the percentage of mice losing the RR after diazepam administration and their sleep time 5 min after the i.c.v. injection, but it was totally inactive 2 h after the injection. On the contrary, PWT1-NPS (30 pmol, i.c.v.), injected 2 h before diazepam, displayed wake-promoting effects. This PWT1-NPS stimulant effect was no longer evident in mice lacking the NPSR receptor. The PWT1 technology can be successfully applied to the NPS sequence. PWT1-NPS displayed in vitro a pharmacological profile similar to NPS. In vivo PWT1-NPS mimicked NPS effects showing higher potency and long-lasting action.

3.
Eur J Neurosci ; 36(11): 3531-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22928868

RESUMEN

Neuropeptide S (NPS) regulates various biological functions by selectively activating the NPS receptor (NPSR). Recently, epidemiological studies revealed an association between NPSR single nucleotide polymorphisms and susceptibility to panic disorders. Here we investigated the effects of NPS in mice subjected to the elevated T maze (ETM), an assay which has been proposed to model anxiety and panic. Diazepam [1 mg/kg, intraperitoneally (i.p.)] elicited clear anxiolytic effects reducing the latency to emerge from the closed to the open (CO) arm without modifying the latencies from the open to the closed (OC) arm. By contrast, chronic fluoxetine (10 mg/kg i.p., once a day for 21 days) selectively increased OC latency, suggesting a panicolytic-like effect. NPS given intracerebroventricularly at 0.001-1 nmol elicited both anxiolytic- and panicolytic-like effects. However, although the NPS anxiolytic dose-response curve displayed the classical sigmoidal shape, the dose-response curve of the putative panicolytic-like effect was bell shaped with peak effect at 0.01 nmol. The behaviour of wild-type [NPSR(+/+)] and receptor knock out [NPSR(-/-)] mice in the ETM task was superimposable. NPS at 0.01 nmol elicited anxiolytic- and panicolytic-like effects in NPSR(+/+) but not in NPSR(-/-) mice. In conclusion, this study demonstrated that NPS, via selective activation of the NPSR, promotes both anxiolytic- and panicolytic-like actions in the mouse ETM.


Asunto(s)
Ansiedad/inducido químicamente , Aprendizaje por Laberinto/efectos de los fármacos , Neuropéptidos/toxicidad , Trastorno de Pánico/inducido químicamente , Animales , Ansiolíticos/uso terapéutico , Antidepresivos de Segunda Generación/uso terapéutico , Ansiedad/tratamiento farmacológico , Diazepam/uso terapéutico , Relación Dosis-Respuesta a Droga , Fluoxetina/uso terapéutico , Masculino , Ratones , Ratones Noqueados , Trastorno de Pánico/tratamiento farmacológico , Tiempo de Reacción , Receptores de Neuropéptido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA